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Abstract—Image polarity detection opens new vistas in the area of pervasive computing.
State-of-the-art frameworks for polarity detection often prove computationally demanding, as
they rely on deep learning networks. Thus, one faces major issues when targeting their
implementation on resource-constrained embedded devices. This paper presents a design
strategy for convolutional neural networks that can support image-polarity detection on edge
devices. The outcomes of experimental sessions, involving standard benchmarks and a pair of
commercial edge devices, confirm the approach suitability.

IMAGE POLARITY DETECTION aims to iden-
tify the emotional content expressed in a pic-
ture. Such a technology is crucial in the era
of pervasive computing, when millions of users
interact everyday with smart devices and use so-
cial networks [1]. Modern polarity detectors rely
on object recognition technologies and embed
convolutional neural networks (CNNs). The in-
creasing availability of reliable, pre-trained CNNs
for object recognition is a major advantage, as
it allows to use transfer learning to shift the
focus on polarity detection; as a result, training a
polarity detector does not require to collect a large
dataset, which is a complex, time-consuming task
due to the the so-called subjective perception
problem [2].

Pre-trained CNNs, however, are most effective
for extracting high-level, structured features from
images, at a considerably high computational
cost. Thus, their implementation on low-power
embedded devices is typically quite challenging.
A practical polarity-detection framework, in fact,
might not require those high-end object recogni-
tion models, as it is known that polarity is not
uniquely determined by the objects identified in
an image [3], [4], [5]. In principle, suitable perfor-
mances in polarity detection can be achieved by
feeding the model with ‘simple’ features inspired
directly by the psychology of vision [6]. In the
presence of stringent constraints on computa-
tional resources, it seems reasonable to rely on
CNN architectures that are less computationally
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demanding, even at the expense of a limited
performance in object recognition. Research on
that subject [4] recently showed that the CNN
architecture (i.e., the pre-trained object recogni-
tion model) does affect the overall performance in
polarity detection only when using a small dataset
for fine tuning.

This paper proposes that a proper design of
the CNN architecture for high-level features ex-
traction can lead to embedded implementations of
polarity detection with real-time capabilities. The
underlying design criteria accomplish the goal
of limiting the computational complexity of the
architecture without affecting the performances of
the polarity detectors significantly.

Contribution
This paper presents a hardware-friendly de-

sign model for image polarity detection. The
model is supported by a CNN architecture ex-
ploiting Depthwise Separable Convolution (DSC)
and weight truncation. Two commercial low-
power embedded devices, namely, the Movidius
Neural Computing Stick and the Nvidia Jetson
TX2, provided the platforms for system deploy-
ment. Experimental results involved four real
word datasets and confirmed the prediction ef-
fectiveness of the design criterion.

RELATED WORK
The literature offers a variety of interesting

approaches to polarity detection. Recent survey
works on this topic [2], [4], [7] concur on the fact
that CNN-based models are state-of-the-art in this
area. It is worth to mention that several important
works addressed image polarity detection before
that deep learning changed the approach to image
processing [8], [9], [10], [11]. However, currently
models based on CNNs represent the state-of-the-
art.

According to the transfer-learning paradigm,
polarity detection frameworks rely on the low-
level features extracted by a CNN trained on ob-
ject recognition. The implementations mainly dif-
fer in a) the adopted CNN, b) the transfer learning
technique, and c) the training data domain. Many
works have explored the idea of fine-tuning pre-
trained object classifiers. In this regard, Campos
et. al [12] adopted the AlexNet architecture for
feature extraction; they carried out an interesting

analysis on the effects of layer ablation and layer
addition on the eventual accuracy in polarity
detection. Other approaches augmented the basic
framework by inserting an ontology-based repre-
sentation on top of object recognition [13]. You
et al. [14] proposed a custom architecture, in
which a pair of convolutional layers and four fully
connected layers were stacked [15].

In some variants of CNN architectures for
polarity detection, both the image and a set of ad-
ditional features formed the network inputs. In the
work of Fan et al. [16], the Vgg 19 architecture
processed an image along with its focal channel,
to model human attention. Likewise, others works
studied the role played by art features [6], context
information [17], salience [18], [19], attention
mechanisms [20], [21], [22] and combinations of
the last two [23]. Rao et al. [24] exploited a faster-
RCNN to locate the distinctive parts of an image.

POLARITY DETECTION ON EDGE
DEVICES

The deployment of inference models derived
from trained networks on edge devices brings
about several design issues, as one needs to prop-
erly balance prediction accuracy, power consump-
tion, and computational speed. When considering
that CNNs are an unavoidable requirement due
to their effectiveness, that trade-off is even more
demanding because of the inherent complexity of
the networks. A reasonable approach goal seems
to get a reliable image polarity detector even start-
ing from a relatively weak object detector, i.e.,
starting from a CNN with moderate complexity.

Interestingly, a recent work [4] empirically
proved that such target is achievable. The exper-
iments showed that, when applying fine-tuning
strategies and in the presence of large datasets,
accuracy of the final polarity detector did not vary
significantly with the basic, pre-trained CNN. A
possible explanation of this phenomenon is that
large datasets are built on top of automatic label-
ing processes, and therefore are presumably af-
fected by induced noise. Therefore, it seems con-
venient to design the CNN architecture according
to a set of strategies that can reduce the compu-
tational cost of a deployed model [25] such as
weight factorization, parameter pruning and shar-
ing, low-rank factorization, transferred/compact
convolutional filters, and knowledge distillation.

November/December 2020 51



Affective Computing and Sentiment Analysis

The CNN architectures adopted in the re-
search presented in this paper feature a pair
of specific design strategies. First, the proposed
method involves Depthwise Separable Convolu-
tion (DSC), which mostly proves as the key
element of the most successful implementation
of CNNs on resource constrained devices [26],
[27], [28], [29]. In DSC, a standard convolutional
operator is replaced by two separate layers, which
represent a factorized version of the original
convolution operation. The first layer supports
a depth-wise convolution and involves a single
convolutional filter per input channel. The second
layer is a 1 × 1 convolution, called point-wise
convolution; it extracts a new set of features
by working out linear combinations of the input
channels. This decomposition remarkably reduces
computational costs: given an input of size h ×
w× d and a convolutional layer characterized by
q kernels of size k × k, the computational cost
Csc of standard convolution is

Csc = h× w × d× q × k × k. (1)

By contrast, when using the factorized ver-
sion, the cost CDSC becomes

CDSC = h× w × d× (k2 + q). (2)

which is significantly smaller than (1). Empir-
ical evidence proves that, in spite of this reduction
in cost, CNN architectures exploiting DSC can
yield object-detection accuracy values that are
comparable with those attained by state-of-the-art
architectures [26], [27], [28], [29].

Weight truncation is the second design strat-
egy used in the proposed approach, and involves
half-precision arithmetic. The eventual outcomes
are appealing: lower latency, memory saving, and
a decrease in power consumption. On the other
hand, quantization errors may seriously affect
arithmetic computations. As modern CNNs in-
volves hundreds of layers, error propagation is
a major problem that ends up in a lower accu-
racy of the inference model. Thus, the effects of
weight truncation on the deployed model should
be carefully evaluated.

In general, both DSC and half-precision
arithmetic act as low pass filter, reducing the
capability of the model of learning details.

This issue, however, might not be an actual
disadvantage in the present application, since
DSC and half-precision arithmetic might help
reduce the effects of overfitting phenomena with
the noisy datasets at hand.

EXPERIMENTS
The experimental sessions were designed 1)

to assess the accuracy scored by the different
image polarity models built upon the different
CNN architectures, ad 2) to analyze the memory
usage, the power consumption, and the latency of
the models when deployed on embedded devices.

This work compares three CNN architectures
involving DSC: MobileNet v1, MobileNet v2,
and MobileNet v2(1.4). These comparisons were
selected because pre-trained models on Imagenet
were available. This made a fair comparison fea-
sible with state-of-the-art architectures for object
recognition such as Res 101, Res 152, Vgg 16
and Vgg 19, which had already proved to be most
effective for image polarity detection [4].

Four popular datasets provided the experi-
mental benchmarks: ANP40 [11], MANP40 [15],
T4SA [30], and “Twitter” [14]. ANP40 and
MANP40 hold collections of images crawled
from Flicker R© repository. Both these datasets are
characterized by adjective-noun pairs that have
been generated by an automatic system. Although
each original dataset held more than 1 million
images, the experiments involved pruned versions
of the samples [4]: only the 20 most positive
and 20 most negative adjective noun-pairs were
selected.

The corresponding images were split into
two subsets (positive and negative samples).
T4SA is a recent dataset of images crawled
from Twitter R© for sentiment analysis; it contains
470,586 images. In this research, images were
categorized into three classes according to
textual information: positive, negative and
neutral. Finally, “Twitter” is a small dataset of
images crawled from Twitter R© and manually
labeled by 5 human annotators. In this work,
following the experimental setup employed
in previous research papers, the five-on-five
agreement version of the dataset was taken into
account.
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Table 1. Datasets.
Training Devel. Test Total

ANP40 9.916 200 400 10.516
MANP40 25.258 3100 3100 31.258
T4SA 368.586 51.000 51.000 470.586
Twitter - - 882 882

The checkpoints of the 7 networks trained on
the 3 dataset are freely available on the author’s
website1.Table 1 summarizes the main details of
the used datasets; the columns give the size of the
training set, the validation set for model selection
(Development), and the test set. It is worth noting
that Twitter dataset was only used to test models
trained on a different dataset.

Single domain
The first group of experiments evaluated the

performances of the image polarity models when
trained and tested on data belonging to the
same dataset. All architectures were trained using
ADAM optimizer with forgetting factor equal
to 0.9, second moment of the gradient equal to
0.999, and batch size 32. Early stop mechanism
was implemented with validation patience of 5.

Table 2 reports on the result of the experi-
ments. The second column gives, for each single
CNN architecture, the average accuracy obtained
by the image polarity model on the test set in
the bi-class experiments involving ANP40 with
32-bit floating point representation. The value
between brackets refer to the difference between
such accuracy and the accuracy obtained when
adopting 16-bit floating point representation. A
positive value indicates that the half-precision
model scored a lower accuracy. The third col-
umn refers to the bi-class experiments involving
MVSO40, while the fourth column refers to the
three-class experiments involving T4SA.

Figure 1 depicts the accuracy attained by
different classifiers when implemented using half-
precision floating point arithmetic. It is worth to
note that figure 1 conveys the same information
of Table 2 in a different format. In the figure,
accuracies are grouped in 3 sets correspond to
the 3 datasets. Bars refer to the score of different
predictors.

1http://sealab.diten.unige.it
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Figure 1. Error rate of the proposed architectures

This experimental session yielded quite in-
teresting results. For each dataset, the accuracy
values always lied within a narrow interval. Sec-
ondly, ResidualNets seemed to suffer the switch
from full precision to half precision more than
other comparisons. This issue can be explained by
considering that ResidualNets architectures were
far deeper than the others, thus making error prop-
agation non negligible. Third, Mobile networks
could compete with ResidualNets and VggNets;
moreover, their performances were not affected
by half-precision representation. In summary, em-
pirical evidence confirmed that DSC is a valuable
strategy for the design of the CNN architecture
in polarity detectors, under the hypothesis that a
large dataset is available for fine tuning.

Transfer domain
The second experimental session considered

a realistic case, in which a model was trained
on a large dataset and was tested on a different
sample. This configuration emulated the practical
run-time implementation. In this session, ANP40,
MANP40, and T4SA provided the training set,
while “Twitter” formed the test set. Unfortunately,
the latter dataset was rather unbalanced, as 581
images were labeled as ‘positive’ and 301 as
‘negative’. Thus, any naı̈ve classifier (always pre-
dicting ‘positive’) would obtain 65% accuracy.

To tackle this issue, true positive rate and true
negative rate were proposed: for each class, true
positive rate and true negative rate give the num-
ber of patterns correctly classified as belonging to
the corresponding class over the total number of
patterns of the class. The aforementioned naı̈ve
classifier would obtain true positive rate 1.0 and
0.0 true negative rate.
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Table 2. Average accuracy on the test set for single domain experiments.
Architecture ANP40 MVSO40 T4SA
MobileNet v1 80.50 (0.25) 76.58 (0.00) 50.68 (0.07)
MobileNet v2 82.75 (0.00) 77.10 (0.07) 49.83 (0.12)
MobileNet v2(1.4) 80.50 (-0.25) 77.55 (0.16) 49.94 (-0.01)
Res 101 82.25 (1.75) 78.19 (3.25) 48.27 (1.98)
Res 152 81.00 (5.75) 78.94 (3.29) 48.61 (2.12)
Vgg 16 80.75 (0.00) 75.90 (0.00) 48.89 (-0.01)
Vgg 19 80.00 (0.00) 75.71 (0.06) 48.69 (0.04)
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Figure 2. Transfer Domain results

Figure 2 reports on the results of this ex-
perimental session. Each mark is associated with
the result of one experiment, involving a training
set and a CNN architecture. In the graph, the
x-axis gives the true negative rate, and the y-
axis gives the true positive rate. Different mark-
ers identify the training datasets: circles refer to
ANP40, crosses refer to MANP40, and stars refer
to T4SA. Likewise, colors denote the various
architectures (as per legend). The experiments
were all performed by adopting the half-precision
representation.

Empirical results confirmed that, unsurpris-
ingly, the performances of the inference models
strictly depended on the adopted training set.
Both ANP40 and MANP40 led to high true
positive rate values, and lower true negative rate
values. T4SA instead lead to the opposite be-
havior. In term of architectures, MobileNet v1
trained on T4SA scored the best performance;
the polarity detector scored about 80% values for
both the descriptors.

Implementation on Edge Devices
The final test session focused on the im-

plementation of the polarity detector on low-
power embedded devices. Experiments involved
two commercial devices, namely Movidius Neu-
ral Computing Stick2 and Nvidia Jetson TX23.

The Movidius Neural Computing Stick
(MNCS) is an hardware accelerator designed to
be plugged to a computing unit through a USB3.0
port. It embeds a VPU unit, namely Myriad 2, and
4 GB of LPDDR3 DRAM. MNCS implements
the inference phase of a CNN after receiving
the input data from the computing unit, which
deals with data acquisition, pre-processing and
operations scheduling. Inference operations are
performed on half-precision floating point arith-
metic.

Jetson TX2 is a stand alone device embed-
ding a 256-core Pascal 1300MHz GPU, an ARM
Cortex-A57 (quad-core) 2GHz, a NVIDIA Den-
ver2 (dual-core) 2GHz and 8GB LPDDR4 RAM.
In the experimental setup, a 32 SDD memory has
been employed for operating system installation.
During the experimental session a swap partition
of 12 GB was adopted. The device was set on
high performance through Nvidia configuration
file.

In each experiment, the deployed model was
obtained by fine tuning the involved CNN on
ANP40. Table 3 summarizes the results of the
experimental session: each row corresponds to
an architecture (as per first column). The sub-
sequent columns are divided in two groups: the
second, third and fourth columns refer to Mo-
vidius and give the average latency in ms, the
average memory consumption, and the average
power consumption for completing an inference,
respectively. The classification results were all
estimated by testing on the “Twitter” dataset.

2http://movidius.com
3http://developer.nvidia.com/embedded/jetson-tx2
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Table 3. Hardware analysis of the deployed models
Movidius Jetson

Architecture Latency Memory Power Latency Memory Power
(ms) (GB) (Watt) (ms) (GB) (Watt)

MobileNet v1 43.98 0.18 1.17 12.0 0.93 1.65/5.76
MobileNet v2 43.40 0.17 0.87 16.3 2.56 2.04/6.13
MobileNet v2(1.4) 61.59 0.20 1.20 24.2 3.69 2.12/6.37
Res 101 405.49 0.93 1.42 22.2 4.22 1.56/7.55
Res 152 607.26 1.23 1.56 31.7 8.42 1.55/7.71
Vgg 16 864.84 2.68 - 43.7 11.60 2.41/7.94
Vgg 19 1046.84 2.79 - 58.0 11.59 2.38/7.59

Memory consumption was assessed via
MNCS Python APIs, power consumption by us-
ing a USB power meter connected between Mo-
vidius and the host PC. The fifth, sixth, and
seventh columns give the corresponding results
for the test on Jetson TX2. In this case, memory
consumption was measured by exploiting TegraS-
tats. Accordingly, two different values are pro-
vided. The first value is the power consumption
associated to the actual computing device (CPU,
GPU, SOC, DDR); the second value is the power
consumption associated to the whole development
platform.

The table shows that, as expected, Jetson
TX2 largely outperformed Movidius in terms
of latency. Nonetheless, the experiments involv-
ing Movidius revealed the remarkable features
of MobileNets, which were targeted indeed to
resource-constrained devices. In terms of memory
consumption, there was a significant gap between
Movidius and Jetson. The latter platform, in fact,
adds an overhead to the memory required to store
the CNN’s parameters. Such overhead stems from
the optimization processes adopted by Jetson to
reduce latency.

CONCLUSION
This paper has followed an empirical

approach to show that image polarity detection
can be deployed on edge devices, provided
suitable design strategies are applied. The crucial
aspect is the design of the pre-trained CNN that
supports object classification. The hypothesis
proposed in this work is that -when fine tuning
can rely on a large dataset- a reliable polarity
detector can be obtained even from a weak
object classifier. Such a weak platform is in fact
a CNN that is set to fit the constraints imposed
by an edge device.

In practice, the research has proved that that
hypothesis held true for the most prominent
CNN architecture designed by exploiting DSCs,
namely MobileNet. Polarity detectors based
on MobileNet reached the same classification
accuracy performances of detectors based
on VggNet and ResNet. Nonetheless, the
implementations on edge devices confirmed that
MobileNet attained outstanding performances in
terms of both latency and memory usage.
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