
Towards GPU-Based Common-Sense Reasoning: Using Fast
Subgraph Matching

Ha-Nguyen Tran1 • Erik Cambria1 • Amir Hussain2,3

Received: 6 April 2016 / Accepted: 2 June 2016 / Published online: 8 August 2016

� Springer Science+Business Media New York 2016

Abstract

Background/Introduction Common-sense reasoning is

concerned with simulating cognitive human ability to make

presumptions about the type and essence of ordinary situ-

ations encountered every day. The most popular way to

represent common-sense knowledge is in the form of a

semantic graph. Such type of knowledge, however, is

known to be rather extensive: the more concepts added in

the graph, the harder and slower it becomes to apply

standard graph mining techniques.

Methods In this work, we propose a new fast subgraph

matching approach to overcome these issues. Subgraph

matching is the task of finding all matches of a query graph

in a large data graph, which is known to be a non-deter-

ministic polynomial time-complete problem. Many algo-

rithms have been previously proposed to solve this problem

using central processing units. Here, we present a new

graphics processing unit-friendly method for common-

sense subgraph matching, termed GpSense, which is

designed for scalable massively parallel architectures, to

enable next-generation Big Data sentiment analysis and

natural language processing applications.

Results and Conclusions We show that GpSense outper-

forms state-of-the-art algorithms and efficiently answers

subgraph queries on large common-sense graphs.

Keywords Common-sense reasoning �
Subgraph matching � GPU computing � CUDA

Introduction

Communication is one of the most important aspects of

human cognitive capabilities. Effective communication

always has a cost in terms of energy and time, due to

information needing to be encoded, transmitted, and

decoded, and sometimes such factors can be critical to

human life. This is why people normally only provide

useful information when communicating and take the rest

for granted. This ‘taken for granted’ information is termed

‘common-sense’ knowledge—obvious things people know

and usually leave unstated.

Common-sense is not the kind of knowledge we can find

in Wikipedia, but comprises all the basic relationships

among words, concepts, phrases, and thoughts that allow

people to communicate with each other and face everyday

life problems. It is a kind of knowledge that sounds obvious

and natural to us, but it is actually daedal and multi-face-

ted. The illusion of simplicity comes from the fact that, as

each new group of skills matures, we build more layers on

top and tend to forget about previous layers.

Common-sense, in fact, is not a simple thing, rather it

should be considered a cognitive repository of practical

ideas, with multitudes of life-learned rules and exceptions,

dispositions and tendencies, balances and checks [18].

& Erik Cambria

cambria@ntu.edu.sg

Ha-Nguyen Tran

hntran@ntu.edu.sg

Amir Hussain

ahu@cs.stir.ac.uk

1 School of Computer Science and Engineering, Nanyang

Technological University, Singapore, Singapore

2 Division of Computing Science and Maths, Faculty of

Natural Sciences, University of Stirling, Stirling, Scotland,

UK

3 Anhui University, Hefei, Anhui, China

123

Cogn Comput (2016) 8:1074–1086

DOI 10.1007/s12559-016-9418-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-016-9418-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-016-9418-4&domain=pdf

Common-sense computing [4] has been applied to many

branches of artificial intelligence, e.g., personality detection

[21], handwritten text recognition [29], and social data anal-

ysis [7]. In the context of sentic computing [3], in particular,

common-sense is represented as a semantic network of natural

language concepts interconnected by semantic relations.

Besides the methodological problem of relevance (selection

of relevant nodes during spreading activation), this kind of

representation presents two major implementation issues:

performance and scalability, both due to themany new nodes,

or natural language concepts learned through crowdsourcing

[6], continuously integrating into the graph. These issues are

also crucial problems of querying and reasoning over large-

scale common-sense knowledge bases (KBs).

The core function of common-sense reasoning is subgraph

matchingwhich is defined as finding all thematches of a query

graph in a database graph. Subgraph matching is usually a

bottleneck for the overall performance as it involves subgraph

isomorphismwhich is known as anNP-complete problem [8].

Previous methods for subgraph matching are backtracking

algorithms [9, 10, 13, 27], with novel techniques for filtering

candidates sets and re-arranging visit order. These algorithms,

however, are designed to work only in small-graph settings.

The number of candidates grows significantly in medium-to-

large-scale graphs, resulting in an exorbitant number of costly

verification operations. Several indexing techniques have also

been proposed for faster computation [30, 31]; however, the

enormous index size makes them impractical for large data

graphs [25].Distributed computingmethods [1, 25] have been

introduced to deal with large graphs by utilizing parallelism,

yet there remains the open problem of high communication

costs between the participating machines.

Recently, graphics processing units (GPUs) have become

popular computing devices owing to their massive parallel

execution power. Fundamental graph algorithms including

breadth-first search [11, 14, 17], shortest path [11, 16], and

minimum spanning tree [28] on large-scale graphs can be

efficiently implemented on GPUs. The previous backtracking

methods for subgraph matching, however, cannot be straight-

forwardly applied to GPUs due to their inefficient use of GPU

memories and SIMD-optimized GPU multi-processors [15].

In this paper, we propose GpSense, an efficient and scal-

able method for common-sense reasoning and querying via

subgraph matching. GpSense is based on a filtering-and-

joining strategy which is designed for the massively parallel

architecture of GPUs. In order to optimize the performance

in depth, we utilize a series of optimization techniqueswhich

contribute toward increasing GPU occupancy, reducing

workload imbalances and in particular speeding up subgraph

matching on common-sense graphs.

Many common-sense knowledge graphs, however, contain

millions to billions of nodes and edges. These huge graphs

cannot be stored on the memory of a single GPU device. We

may thus have to use main memory and even hard disk, if

necessary, as the main storage of the knowledge graphs. To

address the issue, we propose a multiple-level graph com-

pression technique to reduce graph sizes while preserving all

subgraph matching results. The graph compression method

converts the data graph to a weighted graph which is small

enough to be maintained in GPU memory. We then present a

completeGpSense solutionwhich exploits theweightedgraph

to solve subgraph matching problems.

The rest of this paper is organized as follows: Sect. 2

introduces background to the subgraph matching problem

and related definitions; Sect. 3 discusses how to transform

common-sense KBs to directed graphs; Sect. 4 gives an

overview of the filtering-and-joining approach to solve the

subgraph matching problem on GPUs; In Sect. 5, we discuss

our graph representation and graph compression method;

Sect. 6 presents the complete GpSense algorithm in detail;

Sect. 7 shows the results of comparative performance eval-

uations; finally, Sect. 8 summarizes and concludes the paper.

Preliminaries

This section outlines the formal problem statement and

introduces the fundamental definitions used in this paper.

Problem Definition

A graph G is defined as a 4-tuple (V, E, L, l), where V is the

set of nodes, E is the set of edges, L is the set of labels and

l is a labeling function that maps each node or edge to a

label in L. We define the size of a graph G is the number of

edges, size(G) = |E|.

Definition 1 (Subgraph isomorphism) A graph G ¼
ðV;E; L; lÞ is subgraph isomorphic to another graph

G0 ¼ ðV 0;E0; L0; l0Þ, denoted as G � G0, if there is an

injective function (or a match) f : V ! V 0, such that 8ðu; vÞ
2 E; ðf ðuÞ; f ðvÞÞ 2 E0; lðuÞ ¼ l0ðf ðuÞÞ; lðvÞ ¼ l0ðf ðvÞÞ, and

lðu; vÞ ¼ lðf ðuÞ; f ðvÞÞ.

A graph G is called a subgraph of another graph G (or G

is a supergraph of G), denoted as G � G0 (or G0 � G), if

there exists a subgraph isomorphism from G to G0a.

Definition 2 (Subgraph matching) Given a small query

graph Q and a large data graph G, subgraph matching

problem is to find all subgraph isomorphisms of Q in G.

Next, we explain some basic concepts used in the paper

such as matches of a query node, adjacency lists and

candidates set of a node.

Definition 3 (Candidate node) Given a query graph Q ¼
ðV;E; L; lÞ and a data graph G ¼ ðV 0;E0; L0; l0Þ, a node v 2

Cogn Comput (2016) 8:1074–1086 1075

123

V 0 is called a candidate or match of a node u 2 V if

lðuÞ ¼ l0ðvÞ, degreeðuÞ� degreeðvÞ where degreeðuÞ,
degreeðvÞ are the number of nodes connected to edges

starting node u and v, respectively. The set of candidates of

u is called candidates set of u, denoted as C(u).

An adjacency list of a node u in a graph G is a set of

nodes which are the destinations of edges starting from u,

denoted as adj(u).

Subgraph Matching Algorithms

Most state-of-the-art subgraph matching algorithms are

based on backtracking strategies, which find matches by

either forming partial solutions incrementally, or pruning

them if they cannot produce the final results, as discussed

in the works of Ullman [27], VF2 [9], QuickSI [24],

GADDI [30], GraphQL [13] and SPath [31]. One open

issue in these methods is the selection of matching order

(or visit order). To address this issue, TurboISO [10]

introduces strategies of candidate region exploration and

combine-and-permute to compute a good visit order, which

makes the matching process efficient and robust.

To deal with large graphs, Sun et al. [25] recently

introduced a parallel and distributed algorithm (which we

call STW in this paper), in which they decompose the

query graphs into 2-level trees, and apply graph exploration

and a joint strategy to obtain solutions in a parallel manner

over a distributed memory cloud. Unlike STW, our method

uses GPUs to preserve the advantages of parallelism during

computation, while simultaneously avoiding high com-

munication costs between participating machines.

Graphics Processing Units (GPUs)

In our study, we adopt GPUs and Nvidia CUDA as our

development platform.AGPU is connected to aCPU through a

high-speed IO bus slot, typically a PCI-Express in current high-

performance systems. The current PCI-Express v4 is over 30

GB/s. Each GPU has its own device memory, called global

memory, up to several gigabytes in current configurations.

A GPU consists of a number of stream multiprocessors (SMs),

each ofwhich executes in parallel with the others. Each SMhas

multiple stream processors (SPs) for parallel execution. The

stream processors in a multiprocessor execute in single

instruction, multiple thread (SIMT) fashion in which stream

processors in the one SM execute the same instruction at the

same time. There is also a small data cache attached to each

multiprocessor, called shared memory. Shared memory can be

accessed by all threads in a SM. This is a low-latency, high-

bandwidth, indexable memory which runs at register speeds.

A program running on the GPU is called a kernel, which

consists of many thread blocks (groups of threads). Thread

blocks are assigned on a stream multiprocessor for parallel

execution. Each thread of a thread block is processed on a

stream processor in the SM. Since SPs are grouped to share a

single instruction unit, threads mapped on these SPs execute

the same instruction each cycle, but on different data (i.e.,

single instruction multiple data, or SIMD). Once a thread

block is assigned to a stream multiprocessor, it is further

divided into 32-thread units called warps. A warp is the unit

of thread scheduling in SMs. When the threads in a warp

issue a device memory operation, the instruction is very

slow, usually taking up hundreds of clock cycles, due to the

long memory latency. GPUs tolerate memory latency by

using a high degree ofmulti-threading.When onewarp stalls

on a memory operation, the multiprocessor selects another

active warp and switches to one with little overhead.

To best support graphics processors for general-purpose

computation, several GPGPU (general-purpose computing on

GPUs) languages such as NVIDIA CUDA1 are available for

developers to write programs onGPUs easily. CUDA interface

uses standard C code with parallel programming features.

Common-Sense as a Graph

In this section, we discuss how a common-sense KB can be

naturally represented as a graph and how such a KB can be

directly transformed to a graph representation.

Common-Sense Knowledge Graph

Instead of formalizing common-sense reasoning using

mathematical logic [19], some recent common-sense KBs,

e.g., SenticNet [5], represent data in the form of a semantic

network and make it available for use in natural language

processing (NLP) applications. In particular, the collected

pieces of knowledge are integrated in the semantic network

as triples, using the format: hconcept-relation-concepti. By
considering triples as directed labeled edges, the KB nat-

urally becomes a directed graph. Figure 1 shows a

semantic graph representation for part of a common-sense

knowledge graph.

Common-Sense Graph Transformation

This subsection describes how to directly transform a

common-sense KB to a directed graph. The simplest way

for transformation is to convert the KB to a flat graph using

direct transformation. This method maps concepts to node

IDs, and relations to labels of edges. Note the obtained

graph contains no node labels as each node is mapped to a

unique ID. Tables 1 and 2 show the mapping from

1 https://developer.nvidia.com/what-cuda.

1076 Cogn Comput (2016) 8:1074–1086

123

https://developer.nvidia.com/what-cuda

concepts and relations of the common-sense KB in Fig. 1

to node IDs and edge labels. The transformed graph from

the KB is depicted in Fig. 2.

In the general subgraph matching problem, all nodes of

a query graph q are variables. In order to produce the

subgraph isomorphisms of q in a large data graph g, we

must find the matches of all query nodes. Unlike the gen-

eral problem, query graphs in common-sense querying and

reasoning tasks contain two types of nodes: concept nodes

and variable nodes.

A concept node can only be mapped to one node ID in the

data graphs, while a variable node may have many node

candidates. Similarly, query edges are also categorized into

variable and labeled edges. Figure 3 illustrates the conversion

of a common-sense query to a directed query graph.

In the sample query transformation, the query concepts

Person and Glass correspond to two data nodes with IDs of

v4 and v11. The relation Eats is mapped to the edge label r4.

The query graph also contains 2 variable edges: ?x, ?y and

2 variable nodes: ?a, ?b. The direct transformation is a

simple and common approach to naturally convert a

semantic network to a directed graph.

GPU-Based Subgraph Matching

In this subsection, we introduce a parallel approach to solve

the subgraph matching problem on general-purpose graphics

processing units (GPGPUs). Before describing the algorithm

in detail, we explain how a data graph is represented in

memory. In order to support graph query answering onGPUs,

we use two arrays to represent a graph G ¼ ðV ;EÞ: nodes
array and edges array. The edges array stores the adjacency

lists of all nodes inV, from the first node to the last. The nodes

array stores the start indexes of the adjacency lists,where the i-

th element of the nodes array has the start index of the adja-

cency list of the i-th node inV. These arrays have been used in

previous GPU-based algorithms [11, 14, 17]. Two additional

arrayswith the lengths of |V| and |E| are used to store the labels

of nodes and edges (Fig. 4).

Based on the above graph structure, we propose a simple

and efficient subgraph matching algorithm. The approach is

based on a filtering-and-joining strategy which is specially

designed for massively parallel computing architectures of

modern GPUs [26]. The main routine of the GPU-based

method is depicted in Algorithm 1.

Fig. 1 Common-sense

knowledge graph

Algorithm 1: GPUSubgraphMatching (q(V, E, L), g(V’, E’, L’))
Input: query graph q, data graph g
Output: all matches of q in g

1 P := generate query plan(q, g);
2 forall the node u ∈ P do
3 if u is not filtered then
4 c set(u) := identify node candidates(u, g);

5 c array(u) := collect edge candidates(c set(u));
6 c set := filter neighbor candidates(c array(u), q, g);

7 refine node candidates(c set, q, g);
8 forall the edge e (u,v) ∈ E do
9 EC(e) := collect edge candidates(e, c set, q, g);

10 M := combine edge candidates(EC, q, g);
11 return M

Cogn Comput (2016) 8:1074–1086 1077

123

The inputs of the algorithm are a query graph q and a

data graph g. The output is a set of subgraph isomorphisms

(or matches) of q in g. In the method, we present a match as

a list of pairs of a query node and its mapped data node.

Our solution is the collection M of such lists. Based on the

input graphs, we first generate a query plan for the sub-

graph matching task (Line 1). The query plan contains the

order of query nodes which will be processed in the next

steps. The query plan generation is the only step that runs

on the CPU. The main procedure will then be executed in

two phases: filtering phase (Line 2–7) and joining phase

(Line 8–10). In the filtering phase, we filter out node

candidates which cannot be matched to any query nodes

(Line 2–6).

Upon completion of this task, there still exists a large set

of irrelevant node candidates which cannot contribute to

subgraph matching solutions. The second task continues

pruning this collection by calling the refining function re-

fine_node_candidates. In such a function, candidate sets of

query nodes are recursively refined until no more can be

pruned. The joining phase then finds the candidates of all

data edges (Line 8–9) and merges them to produce the final

subgraph matching results (Line 10).

Query Plan Generation

generate_query_plan procedure is used to create a good

node order for the main searching task. It first picks a query

node which potentially contributes to minimizing the sizes

of candidate sets of query nodes and edges. The number of

candidates at the beginning is unknown, so we can estimate

it using a node ranking function f ðuÞ ¼ deg
ð uÞfreqðu � labelÞ

[10, 25], where deg(u) is the degree of a query node u and

freq(u�label) is the number of data nodes having the same

label as u. The score function prefers lower frequencies and

higher degrees. Once the first node is chosen, the gener-

ate_query_plan follows its neighborhood to find the next

node which is unselected and connected to at least one

node in the node order. The process terminates once all

query nodes are chosen.

The Filtering Phase

The purpose of this phase is to reduce the number of node

candidates, resulting in a decrease in edge candidates,

along with the running time of the joining phase. The fil-

tering phase consists of two tasks: initializing node can-

didates and refining node candidates. In order to maintain

the candidate sets of query nodes, for each query node u we

use a Boolean array, c set½u�, which has the length of jV 0j.
If v 2 V 0 is a candidate of u, identify_node_candidates sets
the value of c set½u�½v� to true. The filter_neighbor_can-

didates function, however, will suffer from a low occu-

pancy problem since only threads associated with true

elements of c set½u� are functional while the other threads

Table 1 Node mapping table
Concept Node ID

Adult v0

Male v1

Man v2

Restaurant v3

Person v4

Animal v5

Cake v6

Chocolate v7

Sweet v8

Bull v9

House v10

Glass v11

Table 2 Edge label mapping

table
Relation Edge label

IsA r0

Rises r1

AtLocation r2

Desires r3

Eats r4

HasProperty r5

Fig. 2 Direct transform of common-sense KB

Fig. 3 Direct transformation of common-sense query. a Common-

sense query. b Transformed query

1078 Cogn Comput (2016) 8:1074–1086

123

are idle. To deal with the problem, collect_node_candi-

dates collects true elements of c set½u� into an array

c array½u� by adopting a stream compaction algorithm [12]

to gather elements with the true values in c set½u� to the

output array c array½u�. The algorithm employs a prefix

scan to calculate the output addresses and to support

writing of the results in parallel. The example of collecting

candidate nodes of ?a is depicted in Fig. 5. By taking

advantage of c array, candidate nodes v9, v10 can easily be

mapped to consecutive active threads. As a result, our

method achieves a high occupancy.

After that the filter_neighbor_candidates function will

filter the candidates of nodes adjacent to u based on

c array½u�. Inspired by the warp-based methods used in

BFS algorithms for GPUs [14], we assign to each warp a

candidate node u0 2 c array½u�. Within the warp, consec-

utive threads find the candidates of v 2 adjðuÞ in adjðu0Þ.
This method takes advantage of coalesced access as the

nodes of adjðu0Þ are stored next to each other in memory. It

also addresses the warp divergence problem since threads

within the warp execute similar operations. Thus, our

method efficiently deals with the workload imbalance

problem between threads in a warp. Figure 6 shows an

example of filtering candidate nodes of ?b based on the

candidate set of ?a, Cð?aÞ ¼ fv9; v10g.

If a data node has an exceptionally large degree com-

pared to the others, our algorithm deals with it by using an

entire block instead of a warp. This solution reduces the

workload imbalance between warps within the block.

The Joining Phase

Based on the candidate sets of query nodes, col-

lect_edge_candidates function collects the edge candidates

individually. The routine of the function is similar to fil-

ter_neighbor_candidates, but it inserts an additional por-

tion of writing obtained edge candidates. In order to output

the candidates to an array, we employ the two-step output

scheme [13] to find offsets of the outputs in the array and

then write them to the corresponding positions. com-

bine_edge_candidates merges candidate edges using a

Fig. 4 Graph representation of

the data graph in Fig. 2

Fig. 5 Collect candidate nodes

of ?a

Fig. 6 Filter candidates of ?b based on candidate set of ?a

Cogn Comput (2016) 8:1074–1086 1079

123

warp-centric approach to produce the final subgraph

matching solutions. The threads within the warp i should

share the partial solution, called MiðqÞ, and access them

frequently. We thus store and maintain MiðqÞ in the shared

memory instead of the device memory, which efficiently

hides the memory stalls.

Issues with Large-Scale Common-Sense Reasoning

Despite the fact the algorithm can deal with subgraph

matching on general graphs efficiently, there still remain a

number of issues for applying the approach to common-

sense reasoning, specifically: (1) Unlike query graphs in

general subgraph matching problems, common-sense query

graphs contain concept nodes and variable nodes. We only

need to find the matches of nodes in a subset of variable

nodes, termed projection; (2) Many common-sense

knowledge graphs contain millions to billions of nodes and

edges. These huge graphs cannot be stored on the memory

of a single GPU device. We may thus have to use main

memory and even a hard disk, if necessary, as the main

storage of knowledge graphs.

To overcome these issues, the next section introduces a

graph compression method to decrease the size of data

graphs. Following this, we describe the complete imple-

mentation of our method and a series of optimization

techniques to enhance the performance of common-sense

reasoning.

Multi-level Graph Compression

Due to the large size of the data graph, it cannot be

maintained within the memory of a single GPU device. The

next offline computation aims to reduce the data graph size

such that we can fit it into GPU memory while still pre-

serving the subgraph matching solutions of any query

graphs in the original data graph. In a random labeled

graph, the distribution of nodes and edges are unpre-

dictable. However, a common-sense knowledge graph

contains a lot of similar nodes which share the same group

of nodes in their adjacency lists. For example, v0 and v1 of

the data graphs in Fig. 2 are similar nodes and they have

the same adjacency list. As a result, the two nodes play the

same role in the data graphs and can be combined into one

hyper-node.

Based on the above observation, we apply a multi-level

compression technique to compress the data graph. During

the graph compressing process, a sequence of smaller

graphs Gi ¼ ðVi;EiÞ are constructed from the original

graph G ¼ ðV;EÞ. At each level i, similar nodes are

combined to form a weighted node which is defined later.

The set of nodes which are combined into the weighted

node u after i levels are called the mapping list of u,

denoted as M(u). The compressing task terminates when

the size of Gi is small enough to be maintained in GPU

memory, as depicted in Fig. 7. The final mapping lists are

stored in main memory. At each label i, graph Gi is a

weighted graph which is defined as follows:

Definition 4 A weighted graph at level i is a 5-tuple

Gi ¼ ðVi;Ei; L; l;wÞ where Vi is the set of nodes, Ei is the

set of edges, L is the set of labels, l is a labeling function

that maps each node to a label in L and w is a weighting

function that maps each node or edge to an integer value.

Each weighted node u 2 Vi is a combination of p; q 2
Vi�1 and w(u) = max(jfadjðxÞ

T
(M(p)

S
M(q))|x 2 MðpÞ

S
MðqÞgj). Generally, the weight of node u is the maxi-

mum degree among nodes in the graph constructed byM(p)
S

M(q).

For each weighted edge (u, v) starting from u, if v 2 Vi

is a combination of n;m 2 Vi�1 then w(u, v) =

max(w(p, n), w(q, n)) ? max(w(p, m), w(q, m)). Note the

initial weight of all edges in the original graph is 1.

An edge to/from v is called a common edge two nodes u1
and u2 if there exists two edges ðu1; vÞ and ðu2; vÞ such that

lðu1; vÞ = lðu2; vÞ = lu, denoted as eðlu; vÞ. In the Fig. 2,

eðr0; v2Þ is a common edge of v0 and v1. The list of com-

mon edges between u1 and u2 is denoted as

commonðu1; u2Þ.
Given a user-defined threshold d such that 0 \d� 1, u

and v are called similar nodes if max(|adj(u)|/|common(u,

v)|, |adj(v)|/|commonðu; vÞjÞ � d. These similar nodes, thus,

can be combined into a hyper-node in the next graph

compression level. By using d, we can easily adjust the

ratio of graph compression at each level.

Assume that the data graph is the common-sense

knowledge graph in Fig. 2. After the first level of data

graph compression with d of 1, we obtain a sample

Fig. 7 Multi-level graph compression

1080 Cogn Comput (2016) 8:1074–1086

123

weighted data graph G1 as in Fig. 8. Each node is presented

as a circle with a label and a weight. At this level, we

combine the following pairs of nodes into weighted nodes:

ðv0; v1Þ, ðv6; v7Þ, ðv9; v10Þ. The mapping lists of nodes in G1

are illustrated in Table 3. For the real common-sense

knowledge graph, i.e., SenticNet, the compression ratio is

illustrated in Table 4. The ratio is calculated as the total

number of nodes and edges of the compressed graph

divided by that of the original graph.

The weighted graph Gw, which is obtained after reduc-

ing the size of the original data graph, is used for checking

subgraph matching solutions of given query graphs. Due to

the differences in graph structures of Gw and the original

data graph G, we can re-define candidates (or matches) of a

query node, as follows:

Definition 5 Given a query graph Q ¼ ðV ;E; L; lÞ and a

weighted data graph Gw ¼ ðVw;Ew; Lw; lw;wÞ, a node v 2
Vw is considered as a candidate of a node u 2 V if

lðuÞ ¼ lwðvÞ, degree(u) � w(v) ?
P

wðv; zÞ where

z 2 adjðvÞ, denoted as weight(z).

For example, node u07 is a candidate of ?a in the query

graph in Fig. 3 since degree(?a) = 2 which is smaller than

wðu07Þ ? wðu07; u04Þ ? wðu07; u08Þ = 2. Similarly, u01 and u03 are

also candidate nodes of ?a.

Theorem 1 Given a query graph Q ¼ ðVq;EqÞ, a data

graph G ¼ ðV ;EÞ and a weighted graph Gw ¼ ðVw;EwÞ
which is the compression result of G. If a node v 2 V is a

candidate of node u 2 Vq then node x 2 Vw such that v 2
MðxÞ is also a candidate of u.

Proof We need to prove two conditions: (1) u, v, and x

have the same label because v is a candidate of u and

v 2 MðxÞ. (2) Based on the definition of weighted graphs,

we can see that degreeðvÞ�wðxÞ ?
P

wðx; zÞ where z 2
adjðxÞ or weight(x). Therefore, degree(u) � weight(x). As

a result, x is a candidate of u. h

Theorem 2 For each node u 2 Vq, if node z 2 Ww is not

a match of u in any subgraph matching solution of Q in Gw

then all nodes v 2 MðzÞ are not matches of u in any sub-

graph matching solution of Q in G.

Proof We prove by contradiction. Suppose that there

exists a node v 2 Q which is in a subgraph matching

solution of Q in G, but node z is such that v 2 MðzÞ is not.
According to the definition of the above subgraph iso-

morphism, there is an injective function f: Vq ! V such

that 8ðx; yÞ 2 Eq; ðf ðxÞ; f ðyÞÞ 2 E; lðxÞ ¼ lðf ðxÞÞ; lðyÞ ¼
lðf ðyÞÞ, and v ¼ f ðuÞ. We can see that 8 ða; bÞ 2 E,

a 2 MðpÞ, b 2 MðqÞ, ðp; qÞ 2 Ew. Let a function g: Vq !
Vw such that 8 x 2 Vq. x 2 MðgðxÞÞ. Clearly, f 	 g is a

subgraph isomorphism from Q to Gw and z ¼ f 	 gðuÞ.
This contradicts that z is not in any subgraph matching

solution. h

GpSense

Based on the multi-level graph compression method

introduced in the previous section, we propose a complete

algorithm for subgraph matching on large-scale common-

sense knowledge graphs using GPUs. Figure 9 gives us an

overview of the proposed method, termed GpSense, for

subgraph matching on large common-sense graphs, which

cannot fit the global memory of a single GPU device, using

both GPUs and CPUs. Rectangles denote tasks, while the

others represent data structures used in the method.

Fig. 8 A sample weighted data graph

Table 3 Mapping list of nodes
Weighted nodes Mapping list

u00 v0; v1

u01 v2

u02 v3

u03 v4

u04 v5

u05 v6; v7

u06 v8

u07 v9; v10

u08 v11

Table 4 Compression ratio of SenticNet

Level Threshole d Ratio (%)

1 0.8 61.4

2 0.7 46.2

3 0.7 32.2

Cogn Comput (2016) 8:1074–1086 1081

123

Our GpSense subgraph matching solution comprises two

separate tasks: an offline task containing graph compres-

sion and online query answering. Initially, the data graph G

is stored in the main memory due to its large size. For

offline processes, we start by creating a data structure for

the input data graph, as described in Sect. 4. The data

graph can be maintained in a hard disk or main memory

depending on the size of the data graph and main memory.

Assuming we use main memory as the storage of the cre-

ated index, we then compress the data graph using a

multiple-level approach until the obtained graph G0 can fit

into GPU memory. All mapping lists are also maintained in

the main memory. The compressed data graph G0, then, is
transferred to GPU memory and stored for GPU execution.

In the online query answering task, after receiving a

graph query Q, GpSense generates a query plan for the

input query graph. The obtained query plan is then trans-

ferred to GPU memory. Following this, our method applies

the Algorithm 1 on the weighted graph achieved by the

graph compression step, to find the subgraph matching

results on the GPU. If no solution is found, we can con-

clude there is no subgraph matching solution from Q to

G. Otherwise, based on the achieved solutions and the in-

memory mapping lists, we continue searching for the final

subgraph matching solutions of Q in G.

Algorithm 1, however, is designed for solving the sub-

graph matching on a general graph. In order to adapt the

algorithm to common-sense reasoning, we introduce some

optimization techniques to enhance the performance of

GpSense on large-scale common-sense knowledge graphs

as follows:

Modify the query plan It is based on the properties of

common-sense queries. First, unlike query graphs in gen-

eral subgraph matching problems, common-sense query

graphs contain concept nodes and variable nodes. We only

need to find the matches of nodes in a subset of variable

nodes, termed projection. Second, nodes of a common-

sense knowledge graph are not labeled, but mapped to node

IDs. Therefore, the frequency of a concept node in a query

is 1 and that of a variable node is equal to the number of

data nodes. As a result, the ranking function used for

choosing the node visiting order cannot work for common-

sense subgraph matching.

Based on the above observations, we can make a mod-

ification to generate the node order as follows: we prefer

picking a concept node u with the maximum degrees as the

first node in the order. By choosing u, we can minimize the

candidates of variable nodes connected to u. The next

query node v will be selected if v is connected to u, and the

adjacency list of v consists of the maximum number of

nodes which is not in the order among the remaining nodes.

We continue the process until edges connected to nodes in

the node order can cover the query graph.

Use both incoming and outgoing graph representations

An incoming graph is built based on the incoming edges to

the nodes, while an outgoing graph is based on the out-

going edges from the nodes. The representation of com-

mon-sense graph in Fig. 4 is an example of outgoing graph

representation. Given a query graph in Fig. 3, we assume

using only an outgoing graph as the data graph. Based on

the above query plan generator, node v4 is the first node in

the order. We then filter the candidates of ?b based on v4.

Fig. 9 GpSense overview

1082 Cogn Comput (2016) 8:1074–1086

123

Since ?b does not have any outgoing edges, we have to

pick ?a as the next node and find its candidates by scanning

all the data graphs. There are, however, some issues with

this approach: (1) We need to spend time to scan all the

data graph nodes. (2) The number of candidates can be

very large as the filtering condition is weak. To overcome

this problem, we use an incoming graph along with the

given outgoing graph. By using the additional graph, can-

didates of ?a can be easily filtered based on the candidate

set of ?b. The number of candidates of ?a, therefore, is

much smaller than that in the previous approach. Conse-

quently, GpSense can reduce many of the intermediate

results during execution, which is a key challenge for GPU

applications.

Only use one-time refinement Ideally, the optimal can-

didate sets of query nodes are obtained when the refine-

ment is recursively invoked until no candidate is removed

from the candidate sets. However, our experiments show

most irrelevant candidates are pruned in the first round.

The later rounds do not prune out many candidates, but

lead to inefficiency and reduce the overall performance.

Also, we observe that if the node visiting order is reversed

during the refinement, GpSense is more efficient in terms

of minimizing the intermediate data, as well as in

improving performance.

Experiments

We evaluate the performance of GpSense in comparison

with state-of-the-art subgraph matching algorithms,

including VF2 [9], QuickSI (QSI) [24], GraphQL (GQL)

[13] and TurboISO [10]. The experiments are conducted on

SenticNet and its extensions [22, 23]. The query graphs are

extracted from the data graph by picking a node in Sen-

ticNet and following breadth first search (BFS) to select

other nodes. We choose nodes in the dense area of Sen-

ticNet to ensure the obtained queries are not just trees.

The runtime of the CPU-based algorithms is measured

using an Intel Core i7-870 2.93 GHz CPU with 8GB of

memory. Our GPU algorithms are tested using the CUDA

Toolkit 6.0 running on NVIDIA Tesla C2050 GPU with 3

GB global memory and 48 KB shared memory per stream

multiprocessor. For each of those tests, we execute 100

different queries and record the average elapsed time. In all

experiments, algorithms terminate only when all subgraph

matching solutions are found.

Comparison with State-of-the-Art CPU Algorithms

The first set of experiments is to evaluate the performance

of GpSense on SenticNet and compare it with state-of-the-

art algorithms. SenticNet is a common-sense knowledge

graph of about 100,000 nodes, which is primarily used for

sentiment analysis [2]. In this experiment, we extract

subsets of SenticNet with the size varying from 10,000 to

100,000 nodes. All the data graphs can fit into GPU

memory. The query graphs contain 6 nodes.

Figure 10 shows that GpSense clearly outperforms VF2,

QuickSI and GraphQL. Compared to TurboISO, our GPU-

based algorithm obtains similar performance when the size

of the data graphs is relatively small (i.e., 10,000 nodes).

However, when the size of data graphs increases, GpSense

is more efficient than TurboISO.

Figure 11a shows the performance results of GpSense

and TurboISO on the query graphs whose number of nodes

vary from 6 to 14. Figure 11b shows their performance

results when the node degree increases from 8 to 24, where

the number of query nodes is fixed to 10. As can be seen in

the two figures, the performance of TurboISO drops sig-

nificantly while that of GpSense does not.

This may be due to the number of recursive calls of

TurboISO growing exponentially with respect to the size of

query graphs and the degree of the data graph. In contrast,

GpSense, with a large number of parallel threads, can

handle multiple candidate nodes and edges at the same

time, thus its performance remains stable.

Effect of Optimization Techniques

Here, we carry out a series of experiments to demonstrate

improvements of the proposed refinement function. Fig-

ure 12a shows a comparison between GpSM with and

without the Candidates Refinement function in terms of

average elapsed time. We compare four different versions

of GpSense. The first version implements the refinement

function until convergence. The second version is identical

to the first apart from reversing the node visit order after

the candidates set initialization. The third version stops

refining after the first round, and also reverses the node

Fig. 10 Comparison with state-of-the-art methods

Cogn Comput (2016) 8:1074–1086 1083

123

visit order. The fourth version does not employ the

refinement function. As shown in Fig. 12a, the response

time is faster when using reversed node visiting order,

compared to the original order, and the GpSense with a

limited number of iterations (i.e., the 3rd version) exhibits

the best performance among the four implemented

versions.

Figure 12b illustrates the effect of optimization tech-

niques for refinement and two-data graphs utilization. In

terms of intermediate results size, when the size of query

graph is 20 nodes, the amount of memory that GpSense

needs to maintain the intermediate results, without use of

these techniques, is up to 150 times more than GpSense

using refinement and two-data graphs utilization.

Scalability Test

We tested GpSense’s scalability against SenticNet. The

number of data nodes varies from 100,000 to 200 million

nodes. The data graph is stored as follows: When the data

graph is small, i.e., from 100,000 to 20 million nodes, we

store it in the GPU global memory. If the node number of

the data graph is between 20 million and 200 million, CPU

memory is used to maintain the data graph. The number of

query nodes is 6.

When the data graph size is 20 million nodes, we per-

form two experiments. The first maintains the whole data

graph in GPU memory and the second uses CPU memory.

Fig. 11 Comparison with TurboISO. a Varying query sizes. b Varying average degrees

Fig. 12 Effect of optimization

techniques. a Refinement

running time. b Intermediate

results reduction

Fig. 13 Scalability tests

1084 Cogn Comput (2016) 8:1074–1086

123

As shown in Fig. 13, the second experiment answers sub-

graph matching queries slower than the first experiment,

due to the time taken for data transfer from CPU memory

to GPU memory.

Conclusion

In this paper, we introduced an efficient GPU-friendly

method for answering subgraphmatching queries over large-

scale common-sense KBs. Our proposed method, GpSense,

is based on a filtering-and-joining approach which is shown

to be suitable for execution on massively parallel GPU

architectures. Along with efficient GPU techniques of coa-

lescence, warp-based and shared memory utilization,

GpSense provides a series of optimization techniques which

contribute to enhancing the performance of subgraph

matching-based common-sense reasoning tasks. We also

present a multi-level graph compression method to reduce

the size of data graphs which cannot fit into GPU memory,

but still preserve query answering correctness. Simulation

results show that our method outperforms state-of-the-art

backtracking-based algorithms on CPUs, and can efficiently

answer subgraph matching queries on large-scale common-

sense KBs. For future work, GpSense will be exploited to

enable real-time implementation of our newly proposed

multi-modal NLP and multi-lingual Big Data sentiment

analysis approaches [3, 20, 32].

Acknowledgments This work was conducted within the Rolls-Roy-

ce@NTU Corp Lab with support from the National Research Foun-

dation Singapore under the Corp Lab@University Scheme. The study

was also supported by the National Natural Science Foundation of

China (NNSFC) (Grant Numbers 61402386, 61305061 and

61402389). A. Hussain was supported by the Royal Society of

Edinburgh (RSE) and NNSFC Joint Project Grant No. 61411130162,

and the UK Engineering and Physical Science Research Council

(EPSRC) Grant No. EP/M026981/1. We also wish to thank the

anonymous reviewers who helped improve the quality of the paper.

Compliance with Ethical Standards

Conflict of Interest Ha-Nguyen Tran, Erik Cambria, and Amir

Hussainy declare that they have no conflict of interest.

Informed Consent Informed consent was not required as no human

or animals were involved.

Human and Animal Rights This article does not contain any studies

with human or animal subjects performed by any of the authors.

References

1. Brocheler M, Pugliese A, Subrahmanian VS. COSI: cloud ori-

ented subgraph identification in massive social networks. In:

2010 International conference on advances in social networks

analysis and mining (ASONAM). IEEE; 2010, p. 248–55.

2. Cambria E. Affective computing and sentiment analysis. IEEE

Intell Syst. 2016;31(2):102–7.

3. Cambria E, Hussain A. Sentic computing: a common-sense-based

framework for concept-level sentiment analysis, vol. 1. Berlin:

Springer; 2015.

4. Cambria E, Hussain A, Havasi C, Eckl C. Common sense com-

puting: from the society of mind to digital intuition and beyond.

Berlin: Springer; 2009.

5. Cambria E, Olsher D, Rajagopal D. SenticNet 3: a common and

common-sense knowledge base for cognition-driven sentiment

analysis. In: AAAI. Quebec City; 2014. p. 1515–21.

6. Cambria E, Rajagopal D, Kwok K, Sepulveda J. GECKA: game

engine for commonsense knowledge acquisition. In: FLAIRS;

2015. p. 282–7.

7. Cambria E, Wang H, White B. Guest editorial: big social data

analysis. Knowl Based Syst. 2014;69:1–2.

8. Cook SA. The complexity of theorem-proving procedures. In:

Proceedings of the third annual ACM symposium on theory of

computing. ACM; 1971. p. 151–8.

9. Cordella LP, Foggia P, Sansone C, Vento M. A (sub) graph

isomorphism algorithm for matching large graphs. IEEE Trans

Pattern Anal Mach Intell. 2004;26(10):1367–72.

10. Han W-S, Lee J, Lee J-H. Turbo iso: towards ultrafast and robust

subgraph isomorphism search in large graph databases. In: Pro-

ceedings of the 2013 ACM SIGMOD international conference on

management of data. ACM; 2013. p. 337–48.

11. Harish P, Narayanan P. Accelerating large graph algorithms on

the GPU using CUDA. Berlin: Springer; 2007.

12. Harris M, Sengupta S, Owens JD. GPU gems 3: parallel prefix

sum (scan) with CUDA. Addison-Wesley Professional; 2007.

p. 851–76.

13. He H, Singh AK. Graphs-at-a-time: query language and access

methods for graph databases. In: Proceedings of the 2008 ACM

SIGMOD international conference on management of data.

ACM; 2008. p. 405–18

14. Hong S, Kim SK, Oguntebi T, Olukotun K. Accelerating CUDA

graph algorithms at maximum warp. In: ACM SIGPLAN notices,

vol. 46. ACM; 2011. p. 267–76.

15. Jenkins J, Arkatkar I, Owens JD, Choudhary A, Samatova F.

Lessons learned from exploring the backtracking paradigm on the

GPU. Berlin: Springer; 2011.

16. Katz GJ, Kider JT Jr. All-pairs shortest-paths for large graphs on

the GPU. In: Proceedings of the 23rd ACM SIGGRAPH/

EUROGRAPHICS symposium on graphics hardware. Euro-

graphics Association; 2008. p. 47–55.

17. Merrill D, Garland M, Grimshaw A. Scalable GPU graph

traversal. In: ACM SIGPLAN notices, vol. 47. ACM; 2012.

p. 117–28.

18. Minsky M. Society of mind. New York City: Simon and

Schuster; 1988.

19. Mueller ET. Commonsense reasoning: an event calculus based

approach. Burlington: Morgan Kaufmann; 2014.

20. Poria S, Cambria E, Howard N, Huang G-B, Hussain A. Fusing

audio, visual and textual clues for sentiment analysis from mul-

timodal content. Neurocomputing. 2016;174:50–9.

21. Poria S, Gelbukh A, Agarwal B, Cambria E, Howard N. Common

sense knowledge based personality recognition from text. Berlin:

Springer; 2013.

22. Poria S, Gelbukh A, Cambria E, Das D, Bandyopadhyay S.

Enriching senticnet polarity scores through semi-supervised

fuzzy clustering. In: 2012 IEEE 12th international conference on

data mining workshops (ICDMW). IEEE; 2012. p. 709–16.

23. Poria S, Gelbukh A, Cambria E, Yang P, Hussain A, Durrani TS.

Merging senticnet and wordnet-affect emotion lists for sentiment

analysis. In: 2012 IEEE 11th international conference on signal

processing (ICSP), vol. 2. IEEE; 2012. p. 1251–55.

Cogn Comput (2016) 8:1074–1086 1085

123

24. Shang H, Zhang Y, Lin X, Yu JX. Taming verification hardness:

an efficient algorithm for testing subgraph isomorphism. Proc

VLDB Endow. 2008;1(1):364–75.

25. Sun Z, Wang H, Wang H, Shao B, Li J. Efficient subgraph

matching on billion node graphs. Proc VLDB Endow.

2012;5(9):788–99.

26. Tran HN, Kim JJ, He B. Fast subgraph matching on large graphs

using graphics processors. In: Renz M, Shahabi C, Zhou X,

Cheema AM, editors. Database systems for advanced applica-

tions: 20th International Conference, DASFAA 2015, Proceed-

ings, Part I. Springer; 2015. p. 299–315.

27. Ullmann JR. An algorithm for subgraph isomorphism. J ACM

(JACM). 1976;23(1):31–42.

28. Vineet V, Harish P, Patidar S, Narayanan P. Fast minimum

spanning tree for large graphs on the GPU. In: Proceedings of the

conference on high performance graphics 2009. ACM; 2009.

p. 167–71.

29. Wang Q-F, Cambria E, Liu C-L, Hussain A. Common sense

knowledge for handwritten Chinese text recognition. Cognit

Comput. 2013;5(2):234–42.

30. Zhang S, Li S, Yang J. GADDI: distance index based subgraph

matching in biological networks. In: Proceedings of the 12th

international conference on extending database technology:

advances in database technology. ACM; 2009. p. 192–203.

31. Zhao P, Han J. On graph query optimization in large networks.

Proc VLDB Endow. 2010;3(1–2):340–51.

32. Dashtipour K, Poria S, Hussain A, Cambria E, Hawalah AYA,

Gelbukh A, Zhou Q. Multilingual sentiment analysis: state of the

art and independent comparison of techniques. Cogn Comput.

2016. doi:10.1007/s12559-016-9415-7.

1086 Cogn Comput (2016) 8:1074–1086

123

http://dx.doi.org/10.1007/s12559-016-9415-7

	Towards GPU-Based Common-Sense Reasoning: Using Fast Subgraph Matching
	Abstract
	Background/Introduction
	Methods
	Results and Conclusions

	Introduction
	Preliminaries
	Problem Definition
	Subgraph Matching Algorithms
	Graphics Processing Units (GPUs)

	Common-Sense as a Graph
	Common-Sense Knowledge Graph
	Common-Sense Graph Transformation

	GPU-Based Subgraph Matching
	Query Plan Generation
	The Filtering Phase
	The Joining Phase
	Issues with Large-Scale Common-Sense Reasoning

	Multi-level Graph Compression
	GpSense
	Experiments
	Comparison with State-of-the-Art CPU Algorithms
	Effect of Optimization Techniques
	Scalability Test

	Conclusion
	Acknowledgments
	References

