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A B S T R A C T

Adversarial attacks have attracted much attention in recent years, and a number of works have demonstrated
the effectiveness of attacks on the entire image at perturbation generation. However, in practice, specially
designed perturbation of the entire image is impractical. Some work has crafted adversarial samples with a
few scrambled pixels by advanced search, e.g., SparseFool, OnePixel, etc., but they take more time to find
such pixels that can be perturbed. Therefore, to construct the adversarial samples with few pixels perturbed
in an end-to-end way, we propose a new framework, in which a dual-decoder VAE for perturbations finding
is designed. To make adversarial learning more effective, we proposed a new version of the adversarial loss
by considering the generalization. To evaluate the sophistication of the proposed framework, we compared
it with more than a dozen existing related attack methods. The effectiveness and efficiency of the proposed
framework are verified from the extensive experimental results. The validity of the model structure is also
validated by the ablation study.
1. Introduction

Neural Networks have demonstrated great success in many fields,
e.g., natural language processing [1], image analysis [2], speech recog-
nition [3], recommender system [4], etc. However, recent studies have
indicated that neural networks are vulnerable to adversarial attacks [5].
The adversarial attack usually is deployed with carefully crafted per-
turbations and added to the image which misleads the model in the
meantime to be imperceptible to human eyes.

Different methods exist to construct perturbations, according to the
stage at which the adversarial attack is performed, there are two types
of attacks: poisoning attacks [6] and evasion attacks [7]. The former
takes place during the training phase and creates backdoors in the
machine learning model by adding tainted examples to the training set.
The latter happens at the test stage, by adding deliberately designed
tiny perturbations to benign test samples to mislead the neural network.
There are two main categories of attacks based on the attacker’s level
of knowledge about the target model: white-box attacks and black-
box attacks. White-box attacks assume that the attacker has complete
knowledge of the model, including its architecture and training data,
while black-box attacks assume that the attacker has no knowledge
of the model beyond its input–output behavior. There are also two
main categories of attacks based on the outcome of the attack: targeted
attacks and non-targeted (indiscriminate) attacks. Targeted attacks aim
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to cause a specific, desired outcome for the attacker, such as misclas-
sifying a particular input as a certain class. Non-targeted attacks, on
the other hand, do not aim to achieve any specific outcome, but rather
seek to degrade the overall performance of the model. The various
combinations of these attack types can result in a wide range of attack
scenarios

Adversarial examples are typically generated using a gradient-based
method in the global space, with the magnitude of perturbation being
equal to the size of the image. For example, methods like Fast Gradient
Sign Method (FGSM) [8], Project Gradient Descent (PGD) [9], etc.
are optimized on target loss directly across the entire image. There
are also models that construct the perturbation over a few pixels, for
example, Modas et al. [10] introduced SparseFool, a method that uses
a linear approximation to perturb images in order to execute a few
successful pixel attacks. However, the number of disturbing pixels in
this approach is not practical to manage. Later, Su et al. [11] proposed
the OnePixel model, which uses differential evolution to find local
optima, but this process takes a significant amount of time. Therefore,
can we efficiently identify adversarial points with a controlled number
of perturbed pixels, even when the model’s architecture and parameters
are unknown? By limiting the modifications to a small number of
pixels, the adversarial perturbations become less noticeable to human
observers, making them highly effective in real-world scenarios. This
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stealthy nature enables adversaries to launch attacks that can bypass
security systems, such as image classifiers or object recognition algo-
rithms, while remaining visually indistinguishable from the original
image. Additionally, minimizing the number of modified pixels re-
duces computational complexity and generation time for adversarial
examples, facilitating faster and more efficient attack strategies. Fur-
thermore, it is important to note that in real-world applications, we
typically lack detailed information about the victim model. Hence, this
question emphasizes the urgency of swiftly identifying these critical
points while maintaining control over the manipulated pixels.

To cope with this problem, we try to generate perturbations in
an end-to-end manner using a neural network-based model, where a
shadow model is used as a substitute to guide the generation of pertur-
bations. In general, the difference between the adversarial sample and
the corresponding original sample should be as small as possible, which
is the stealthiness usually guaranteed by adversarial attack methods.
We believe that the point of attack will be more stealthy when it
occurs on the contour of the objective. For example, all the attack
points that are in the outline of the image would be more difficult
to identify. Therefore, to guide the attack point to be located in the
silhouette, we apply a generative model (e.g., generative adversarial
network (GAN) [12], variational auto-encoder (VAE) [13]) to generate
perturbations. Also, to make the attack effective, inspired by the work
of CW [14], adversarial samples should be misclassified with a high
probability of misclassification. The problem is that it is difficult to
optimize the target category to the adversarial one as it only con-
cerns the maximum and the target one. To cope with this problem,
a newly designed adversarial loss is proposed to let the model craft
the adversarial samples more smoothly. Another significant challenge
is to determine the precise location of a limited number of pixels that
can be manipulated. To deal with this problem, in this work, a dual-
decoder VAE is used, where the output of one decoder is used to obtain
image salient silhouettes, and the output of the other decoder is used
to generate perturbations. Then the adversarial sample is constructed
by choosing places in the silhouette that have a larger value than the
top-𝐾. In summary, the contributions of this paper are as below:

• We design a new framework for adversarial attacks by introduc-
ing a shadow attack approach.

• We design an adversarial sample generation model that is able to
control the number of pixels attacked.

• The empirical results show the effectiveness of the model in a
black-box setting.

. Related works

Since Szegedy et al. [8] first proposed the existence of adversarial
xamples, many adversarial attack algorithms have been proposed to
iscuss the vulnerability of deep neural networks. Existing adversar-
al attack models can be roughly divided into white-box attacks and
lack-box attacks based on whether knowing the target model.

.1. White-box attacks

In recent years, there has been growing concern about the vulner-
bility of neural networks to adversarial attacks, where small pertur-
ations to images can mislead the network. Szegedy et al. [8] first
emonstrated this vulnerability with the L-BFGS attack, which high-
ights the nonlinear representation and over-fitting of neural networks.
n response, Goodfellow et al. [15] then introduced the FGSM, which
enerates adversarial perturbations through a one-step computation on
he non-targeted loss function. Papernot et al. [16] also developed the
acobian-based Saliency Map Attack (JSMA), which relies on knowl-
dge of the network to create adversarial samples using saliency maps
erived from forwarding derivations. There have been several varia-
ions on FGSM proposed, such as R-FGSM [17], which adds random
2

perturbations for enhanced attacks, MI-FGSM [18], which integrates
momentum terms into iterations to eliminate bad local maxima, and
F-FGSM [19], which combines FGSM with random initialization and
has been shown to achieve the same effect as PGD [9]. Xie et al. [20]
also proposed the DI-FGSM attack, which adjusts the input image
randomly in each iteration before generating adversarial perturbations
with FGSM.

Kurakin et al. [21] proposed iterative methods, such as the ba-
sic iterative method (BIM) and the iterative least-likely class method
(ILLC), for generating adversarial examples. These methods differ from
single-step attacks in that they involve multiple iterations to generate
adversarial examples. The PGD attack, introduced by Madry et al. in
their work [9], is essentially a variant of the Fast Gradient Sign Method
(FGSM) that involves taking multiple small-step iterations instead of a
single large step. In addition, the PGD attack clips the perturbations to
a certain range. PGDL2 and PGDL∞ also introduced in [9], use different
norms for regulating the perturbations – L2 norm in the case of PGDL2
and ∞ norm in the case of PGDL∞. The Targeted Projected Gradient
Descent (TPGD) attack with a random start, also from [9], is a more
complex method that tends to perform better than the other baseline
methods.

Carlini and Wagner [14] introduced the CW attack, which treats
the problem of generating adversarial examples as an optimization
problem and aims to minimize the difference between the original and
adversarial samples while maximizing the model’s wrong classification
probability. The CW loss function includes adjustable hyperparameters
and parameters that control the confidence of the generated adversarial
samples. Although the CW attack is one of the strongest white-box
attacks, it is slow due to the line search and may require thousands
of iterations.

While the effectiveness of L𝑝 distance as a perceptual quality metric
is still being researched, Xiao et al. [22] focused on spatial transfor-
mation rather than direct manipulation of pixel values for perturbation
generation. Modas et al. [10] proposed SparseFool, which uses the low
mean curvature of the decision boundary to control the sparsity of
perturbations, resulting in more efficient attacks on high-dimensional
data. In general, various methods for generating perturbations have
been proposed and tested for their effectiveness in perceptual tasks.
However, few works have been able to control the quantity and quality
of perturbation generation. In this paper, based on the above work, we
propose an adversarial attack model based on a generative model that
can quickly and effectively generate adversarial samples with a fixed
number of pixel perturbations.

2.2. Black-box attacks

Black-box attacks can be classified into three types based on the way
they are deployed. The first type involves training a substitute model to
approximate the target model and use it to create adversarial samples.
For instance, Papernot et al. [23] trained a local model to replace
the target DNN and generate adversarial samples. Zhang et al. [24]
proposed a perturbation generation framework that used a neural
approximation function to find the best camouflage to conceal the
attack. An alternative approach is to use higher-order approximation
to eliminate the need for a substitute model. For example, the zero-
order optimization (ZOO) attack proposed by Chen et al. [25] generates
adversarial samples by directly estimating the gradient of the target
DNN.

The second type of attack involves finding the decision boundary,
which can be approximated directly. For example, the decision-based
boundary attack proposed by Brendel et al. [26] starts with a large
adversarial perturbation and then iteratively reduces the perturbation
while maintaining its adversarial nature. This approach is relatively
easy to implement as it requires minimal hyperparameter tuning and
does not depend on the use of auxiliary models.
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The third type of attack involves finding a universal perturbation.
For example, Moosavi et al. [27] proposed a universal adversarial
perturbation attack (UAP) by accumulating perturbations on a single
input and adding the generated perturbations to each data sample,
repeating the process until the sample is misclassified.

Dues to lacking information of target model, it takes time to esti-
mate the gradient or target model. Several researchers have proposed
methods to improve the efficiency of adversarial perturbation attacks,
which aim to fool machine learning models by making small changes
to input data. Du et al. [28] proposed a meta-learning-based black-box
attack method that uses prior information from successful attacks to
optimize the perturbation. Ru et al. [29] used Bayesian optimization to
find successful perturbations with high query efficiency. Su et al. [11]
proposed a semi-black box one-pixel attack that modifies a feature of
a given image using differential evolution to find the perturbations.
Wang et al. [30] introduced an aggregation gradient to obtain the
importance of features and destroy important object perception features
that influence the decision-making of the target model. Wang et al. [31]
created transferable adversarial samples by mixing the gradient of the
input image with a small part of each plug-in image while maintaining
the original label of the input. Different from those works, we mainly
focus on the generative model that can locate the adversarial points in
an efficient way.

3. Models

We mentioned that the training process involves two steps: shadow
model training and perturbation generation. During perturbation genera-
ion, we further divide it into two parts: first, we train a well-trained
uto-encoder, and then we identify the points to perturb. From our
bservations, it is challenging to determine the exact locations and
alues that can cause havoc. As mentioned before, it is more effective
o add the perturbation 𝜎 to the outline of the image 𝑥𝑜 ∈ 𝑥, as this
nsures stealth. The first step in this process is to find the outline 𝑥𝑜
n the image. Typically, this is done using the Jacobean to find the
irst-order features, but in this paper, we use a generated-based model
o actively learn the adversarial sample in order to generate more
ffective perturbations. Specifically, in this paper, we use a VAE as the
enerative model, although in some other cases, it could also be a GAN.
o make the generated adversarial example located in the silhouette, a
ual-decoder is adopted. For clarity, we depict the proposed structure
n Fig. 1.

There are three parts in the model: 𝑥 is the input image,  denotes
he encoder (a three-convolutional layer with ReLU as the activation
unction, where the orange blocks represent the convolution layers
nd the blue blocks represent the batch normalization layers that are
pecified with the output of the convolution layer), 𝑧𝑝 and 𝑧𝑠 (shown
s yellow blocks) are the latent variables for the dual-decoder, and 𝑝
nd 𝑠 are the decoders where 𝑝 generates the perturbation 𝜀𝑝 and
𝑠 generates the silhouette 𝜀𝑠. Both of these decoders consist of three
econvolutional layers with ReLU as the activation function, shown as
reen blocks. 𝑀 and �̂� are the target model and the shadow model,
espectively. The target model is represented by the gray box in the
mage, while the shadow model is a three-layer convolutional layers
odel. However, if the victim model is more complex, a correspond-

ngly more intricate model can be used as the shadow model. The
utput of these two models is connected to a fully-connected layer,
epresented by the rectangles in the image.

In order to create a successful shadow attack, a training process is
ollowed which includes three main steps: model imitation (depicted
n the blue box in Fig. 1), shadow attack points selection (depicted in
he green box in Fig. 1), and perturbation optimization (depicted in
he yellow box in Fig. 1). Specifically, The first two steps pertain to the
hadow model training, while the optimization of perturbations belongs
3

o the perturbation generation process. During the model imitation step, w
he shadow model is optimized through the use of knowledge distilla-
ion with the original model. The shadow attack points selection step
nvolves identifying the most effective attack points on the skeleton of
n object in an image using a dual-decoder. Finally, the perturbation
ptimization step involves using a specially designed adversarial loss
o optimize the perturbation based on the performance of the well-
rained shadow model and VAE. The use of a VAE helps to effectively
ncorporate task-specific features from various models, making it a
rucial element in the generation of perturbations. Through these three
teps, the objective function is able to accurately reflect the training
rocess, resulting in a successful shadow attack.

.1. Model imitation

To begin with, we will construct a substitute model, also known as
shadow model, to mimic the behavior of the target model through

dversarial training. This imitation process is typically done through
einforcement learning, which involves training the shadow model to
eplicate the output of the target model, even though we have limited
nowledge about how the target model works. The purpose of creating
shadow model is to identify vulnerabilities or points of attack in the

arget model. In order to do this effectively, the shadow model must
e able to locate universal optimal adversarial points within an image.
owever, it can be time-consuming to obtain a comprehensive policy
etwork through reinforcement learning.

In order to create a more effective shadow model, we can use a
rocess called knowledge distillation to transfer knowledge from the
eacher model (the target model) to the student model (the shadow
odel). One common method for doing this is training with KL-
ivergence, which distills information from the teacher model. How-
ver, in this case, the target model is complex and task-specific, making
t difficult to transfer knowledge from scratch without knowing the
etails of the model. Additionally, it is difficult to determine the
ptimal size of the shadow model for efficient knowledge transfer. In
rder to achieve effective transfer in this work, we use dual-teacher
nowledge distillation, only knowing the logit output of the target
odel, as described in Eq. (1).

𝑖𝑚 = 𝑦 log �̂�(𝑥) + (�̂�(𝑥) −𝑀(𝑥))2 (1)

n the equation, 𝑀 denotes the classification model as mentioned
efore (i.e., the teacher model), and �̂� represents the shadow model
i.e., the student model), 𝑥 is the input, and the 𝑦 is ground truth. The
irst part of the right-hand side (RHS) is the distillation from the ground
ruth which guides the model in a direct way and ensures the student
odel obtains the basic knowledge of the data, then the second part of

he RHS distills the knowledge from the target model directly. Through
hese two parts, the shadow model largely distills the knowledge from
he target model.

.2. Shadow attack points selection

After obtaining the shadow model, we need to identify the points
hat we want to attack. Previously, the attack models treat all the
mages as the attack points with the gradient descent, and the learned
erturbation 𝜀 ≤ 𝜎 is well crafted in the small range. However, it
s impractical to apply detailed perturbations over the entire image.
herefore, we need to determine which features are the most important
or image processing and select specific points from these important
eatures to generate the adversarial example. To find the important
eatures, a specially designed VAE which includes a two-head decoder
s applied and ensures the attack points are on the skeletons of the
bject with the reconstruction procedure. The encoder  encodes the
nput into the latent space for feature extraction. It produces two
airs of outputs: one for perturbation localization, 𝑧𝑠, which is passed
s input to the decoder 𝑠, and one for interference generation, 𝑧𝑝,

hich is passed as input to the decoder 𝑝. As described earlier, the
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Fig. 1. The structure of the proposed model, the blue box denotes the model imitation, the yellow box denotes the shadow attack points selection and the green box denotes the
perturbation optimization. The function of each block is described in the corner below. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
perturbation submerged in the structure of the image can assist in the
concealment of the attack, especially in the SAR-based image, i.e., the
high-contrast image. Therefore, the perturbation is selected with top-
𝑘 values from 𝜀𝑠 (i.e., the output of 𝑠) where we assume that top-𝑘
values are the most important features that can be utilized, i.e., 𝑝 =
top-𝑘(𝜀𝑠), and this value is acted as the mask to control the place
that needs to be selected, and 𝑘 denotes the number of the perturbed
pixels. The value of the perturbation is then determined by 𝜀𝑝 (i.e., the
output of 𝑝), which is optimized using the reconstruction loss (i.e., the
expectation value of the expected negative log-likelihood for all data
points) and the regularizer (i.e., the Kullback–Leibler (KL) divergence
between the posterior 𝑠(𝑧𝑠) and prior distributions of the encoder
(𝑧𝑠|𝑥) ∼  (𝑧𝑠|𝝁0,Σ0) , where  is the normal distribution, 𝝁0 is
the mean of the distribution, and Σ0 is the covariance matrix of the
distribution), and this is described in Eq. (2).

𝐿𝑟𝑒 = E𝑧𝑠∼(𝑧𝑠|𝑥)[log𝑠(𝑥|𝑧𝑠)] −KL((𝑧𝑠|𝑥)||𝑠(𝑧𝑠)) (2)

The perturbation is calculated as follows:

𝜀 = 1(𝜀𝑠 ≤ 𝑝) ⋅ 𝜀𝑝 (3)

where 1 denotes the indicator function when the value is true, it will
be 1 in that place. The variable of 𝜀𝑝 is optimized with the adversarial
loss described in Eq. (4). After the perturbation is selected, we add it
to the image directly to form the adversarial sample.

3.3. Perturbation optimization

The first two steps involve constructing the adversarial attack. To
guide the entire procedure, a carefully designed adversarial loss is
employed. And guarantees the disturbances generated by the model
can be antagonistic. We also applied the optimized-based attack to
construct our adversarial examples. Generally, a usual way to construct
the adversarial examples is to find an adversarial perturbation 𝜀 that
𝑀(𝑥 + 𝜀) ≠ 𝑦, 𝑠.𝑡.𝜀 ≤ 𝜎. And this is optimized with the function
min 𝑐 ⋅‖𝜀‖22− loss𝑀,𝑦(𝑥+𝜀), where loss is a common loss function which
usually is cross-entropy, and 𝑐 is a positive constant member to yield the
stealthy adversarial examples. However, it is difficult to find a proper
𝜀 as 𝑀(𝑥 + 𝜀) ≠ 𝑦 is highly non-linear. In works [14], they solve
this problem by changing it to an appropriate optimization instance,
4

e.g., 𝜀𝑖 =
1
2 (tanh(𝑤𝑖)+1)−𝑥𝑖 in an optimization iteration. This approach

provides the opportunity for perturbation learning, however, it still
needs multiple iterations to find the optimized approximate value of the
perturbation. To cope with this problem, and reduce the learning time,
we construct a neural-based model to learn the perturbation. The neural
network here is the dual-decoder VAE mentioned in Section 3.2. It can
also be another generative model e.g., generative adversarial networks
(GAN). After obtaining the most sensible place with top-𝑘 values from
𝜀, we need to ensure the distance between the original image and its
adversarial is close, which can be described in min ‖𝜀‖𝑝, which can be
the different 𝑝-norm (e.g., 𝑝 = 1, 𝑝 = 2 and 𝑝 = ∞, etc.). Another term
which is to limit the example to be adversarial, the objective function
can be described as min(max(Avg(�̂�(𝑥 + 𝜀)𝑖 ∶ 𝑖 ≠ 𝑡) − �̂�(𝑥 + 𝜀),−𝜏)),
where Avg(�̂�(𝑥 + 𝜀)𝑖 ∶ 𝑖 ≠ 𝑡) is the average value of the output when
𝑖 ≠ 𝑡, 𝜏 is the super-parameters controls the degree of the attack, 𝑡 is
target category, and 𝑖 is current predicted category. Therefore, the loss
in this work is described as in Eq. (4).

𝐿𝑎𝑑𝑣 = ‖𝜀‖𝑝 + max(Avg(�̂�(𝑥 + 𝜀)𝑖 ∶ 𝑖 ≠ 𝑡) − �̂�(𝑥 + 𝜀),−𝜏) (4)

The first term indicates that the adversarial sample and the original
image should be close, which is to ensure concealment. The second
term denotes the adversarial loss that guides the perturbation gener-
ation. There are different ways to find the optimized points for the
perturbation generation. In this work, the gradient information that
propagates from the shadow model described in Section 3.1 is adopted
in the optimization. Therefore, the objective function of this framework
is described as followed:

𝐿 = 𝛼𝐿𝑖𝑚 + (1 − 𝛼)(𝐿𝑎𝑑𝑣 + 𝛾𝐿𝑟𝑒)

𝛼 =
{

1 IF 𝑇 < 𝑁
0 ELSE

(5)

Where 𝛼 is the indication marker that determines the model training
procedure, 𝑇 denotes the number of training iterations, which means
that in the first 𝑇 epochs, we need to train the shadow model well and
then optimize the perturbations after the 𝑇 iteration training, and in
the second term, 𝛾 is the hyperparameter that balances the different
losses in the same optimization space.
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Table 1
The results of the target model on three datasets, as determined by the oracle, are
presented in the first two columns. The remaining three columns provide details about
each dataset.

VGG16 ResNet Train Test Category

Fashion MNIST 92.18% 85.85% 60,000 10,000 10
CIFAR10 82.67% 83.72% 50,000 10,000 10
CIFAR100 61.40% 56.11% 50,000 10,000 100

3.4. Different with previous works

There are plenty of models that apply the substitute method to
conduct black box attacks, but it is unclear why these substitute models
are effective. It can be difficult to determine which specific parts of the
model need to be modified, but even small changes can have significant
consequences. In this paper, we propose a new method for generating
adversarial samples that focuses on a small number of targeted points
with high efficiency. To do this, we use a substitute model called
a shadow model, which is trained using knowledge distillation. We
also employ a VAE to create subtle perturbations in specific locations
and values in the original image, making the perturbations virtually
invisible. This method allows us to attack a multi-layered neural net-
work model with minimal effort, and the perturbations can be directed
toward an approximate target model.

4. Experiments

In this section, we run all experiments five times and record the
average results in order to validate the effectiveness of the proposed
model. The evaluation metrics for these experiments include the peak
signal-to-noise ratio (PSNR) which measures the quality of the per-
turbed image, the attack decrease rate (ADR) which evaluates the
attacking efficiency of the model, and the dot that changed (DTC)
which counts the number of perturbed image dots. Especially, the PSNR
is calculated as:

PSNR = 10 ⋅ log10(
max2�̂�
MSE ) (6)

where MSE is the mean squared error which is calculated with

MSE = 1
𝑚𝑛

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0
[�̂�(𝑖, 𝑗) − 𝑥(𝑖, 𝑗)]2 (7)

here 𝑚, 𝑛 denote the scale of the image, and max�̂� is the maximum
ossible value of the image. Different from previous work, to obtain a
obust evaluation of the attack success, ADR is calculated on all of the
est datasets with:

DR =
𝑟𝑠 − 𝑟𝑎
𝑟𝑠

(8)

𝑠 is the test accuracy on the normal data, and 𝑟𝑎 denotes the test
ccuracy on the adversarial data. DTC is the number of the perturbation
dded on. We performed experiments on three datasets: FashionMNIST,
IFAR10, and CIFAR100. The target models utilized in these experi-
ents were VGG16 and ResNet, which were pre-trained on ImageNet

nd then fine-tuned on the aforementioned datasets. The results of
hese experiments are presented in Table 1.

In this paper, we consider both white-box and black-box attack
cenarios using the state-of-the-art (SOTA) attack model. In the white-
ox scenario, the attacker has access to the model parameters, while
n the black-box scenario, the attacker does not have access to these
arameters. Further details on these scenarios will be provided in the
ollowing section.
5

.1. Baselines

In this paper, the models we compared include:

• FGSM [15] is one of the classic white-box attack methods which
deploy the attack by using chain rules and finding the desired
gradients, the maximum perturbation is set as 8∕255 to the best
performance. While, there are many variants based on FGSM,
to make comprehensive comparisons, we also listed them in the
compared models.

– BIM [21] applied perturbation to physical world images us-
ing a basic iterative method with a maximum perturbation
of 8∕255, step size of 5∕255, and a number of steps of 20.

– MIFGSM [32] improved FGSM with iterative momentum,
using a maximum perturbation of 8∕255, step size of 5∕255,
and a number of steps of 20.

– RFGSM [17] used a randomization-step attack to generate
perturbations with a maximum perturbation of 8∕255, step
size of 5∕255, and a number of steps of 20.

– DIFGSM [20] used a maximum perturbation of 8∕255, step
size of 5∕255, and a number of steps of 20.

– FFGSM [19] is a fast version of FGSM that speeds up the
process, using a maximum perturbation of 8∕255 and step
size of 5∕255.

• PGD [33] is another iterative attack model which searches for the
adversarial perturbation through one-more steps iteration rather
than a single step that is used in FGSM. In the application, the
maximum perturbation is 8∕255, the step size is 5∕255, and the
step number is 20.

– PGDL2 [33] is a variant of PGD that proposed in [33]. In
the application, the maximum perturbation is 8∕255 and the
step size is 5∕255 with the step number 20.

– TPGD [34] is to trade off the balance between robustness
and accuracy by considering the theory of classification-
calibrated loss. In the application, the maximum perturba-
tion is 8∕255, the step size is 5∕255, and the step number is
20.

– APGD [35] is another SOTA in the adversarial attack. In
the application, the maximum perturbation is 8∕255, and the
step number is 20.

• CW [14] deploys the attack with the distilling method which
inspires our work in the adversarial objective function designing,
and it has become one of the most effective white-box attack
models. In the application, the box constraint is 0.5 and the
optimization step is 1000 with a learning rate of 0.05.

• DeepFool [36] is to find the smallest perturbation that misleads
the classifier. In the application, the step number is 20, and the
parameter for enhancing the noise is 0.02.

• SparseFool [10] is to mislead the classifier with the fewest
perturbed points by using a linear approximation to obtain the
decision boundary, the perturbed points are fewer than other
models. In the application, the step number is 20, the parameter
for scaling noise from DeepFool is 3, and the parameter for
enhancing the noise is 0.02.

• OnePixel [11] is to generate one-pixel adversarial perturbation
by differential evolution, and the goal of this model is most
relevant to our work. In the application, the step number is 20,
the population size in differential evolution is 400, and the pixel
number is selected in the range of [1, 5] as needed.

In this study, we conducted a black box attack on a target model
sing a shadow model with a three-layer convolutional neural network.
he shadow model was trained using model imitation, as described

n Section 3.1. The attack was performed using the SOTA techniques
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mentioned above, which involved generating perturbations over the
shadow model. The effectiveness of the attack was evaluated in a black
box setting, where the internal structure of the target model was un-
known to the attacker. It is the same case in our attack scenario where
the shadow model is a three-layer convolutional neural network with
VAE as the perturbation generator, the kernel size of the convolutional
layers is [3, 4, 5], and the encoder of VAE is a four-layer convolutional
model by setting all kernel size to 4, and the decoder is a four-layer
deconvolutional layer with kernel size as 4. The details of the structure
are shown in Fig. 1. In our attack scenario, we need to first train the
shadow model to have a well-trained alternative model by optimizing
the imitation loss 𝐿𝑖𝑚. Then we need to use the adversarial loss 𝐿𝑎𝑑𝑣
together with 𝐿𝑟𝑒 to learn the adversarial samples. The performance of
the model is described in the following sections.

4.2. Model performance

The performance is evaluated with adversarial attack and adversar-
al robustness respectively.

.2.1. Adversarial attack
Specifically, in the black box attack scenario for the SOTA attack

odels, the target model is a well-trained shadow model used to
enerate perturbations. These perturbations are added to an image,
hich is then fed into the target model. The attack results on these

hree datasets are listed in Tables 2–4. From Table 2, we can see that
ur model is not the best in terms of PSNR performance, since we
ssume that perturbations can be added manually in the physical world,
here is no precise limitation on perturbations. While in the view of
DR, our model achieves the best performance in all cases. The main
eason is that our model explores global perturbations in a general
ay that guarantees good attack performance in the black-box setting
nd also good transferability. Another important feature is that a fixed
umber of pixels that can be controlled are perturbed to construct the
dversarial examples. In Tables 3 and 4, it is 15 pixels are perturbed on
IFAR10 and CIFAR100, and 5 pixels are perturbed on Fashion MNIST
ased on the performance in Table 2. In general, FGSM-based and PGD-
ased methods compute perturbations in all image spaces. It is difficult
o produce such an adversarial example in the physical world, though
hey have higher PSNRs which indicate better stealthy. Our model
enerally achieves better attacking results with fewer perturbed pixels
ompared to SparseFool, with the exception of ResNet on CIFAR100
nd VGG16 on Fashion MNIST. In some cases, our model also has
etter performance in terms of PSNR. This is mainly because SparseFool
an efficiently find the optimal place to make the fewest number of
erturbations using its gradient-based method. Compared to OnePixel,
he situation is almost the same as SparseFool, where our model obtains
igher ADR for the same perturbed pixels and also has competitive
SNRs. Surprisingly, PGDL2 has the best PSNRs in almost all cases, but
he worst ADRs, due to the enhanced similarity between the adversarial
nd original examples by the 𝐿2-norm.

In Eq. (4), the perturbation 𝜀 constraints have different norms
available. We list these norms in the last three rows of the tables and
compare their performance. The results show that the 𝐿2-norm consis-
tently outperforms the 𝐿1-norm and 𝐿∞-norm in all cases. Therefore,
the 𝐿2-norm is more suitable for optimizing the decision boundary with
the generative model. As a result, the 𝐿2-norm will be adopted in all
subsequent experiments.

We also illustrate the image that was attacked by different methods,
and the results are listed in Figs. 2 and 3. From the figure, we can see
that in the OnePixel attack and SparseFool attack, the attack point can
be easily perceived. In attack methods e.g., FGSM and PGD, we can
observe that the backgrounds are blurred and all images are actually
corrupted. While in the cases of CW and DeepFool, the images are
almost the same as the original, but the ADR is their shortcomings.
6

Table 2
The attack results on Fashion MNIST, the number in bold denotes the best results, the
higher the better for the ADR and PSNR and the lower the better for the DTC.

Attacks ResNet VGG16

Measurements PSNR ADR DTC PSNR ADR DTC

FGSM 75.54 2.82% 583.9 75.53 3.28% 585.0
BIM 83.62 0.26% 584.8 83.62 0.76% 584.3
MIFGSM 79.89 1.48% 593.4 79.89 1.55% 591.9
FFGSM 80.18 1.19% 585.5 80.18 1.28% 585.5
DIFGSM 80.79 0.76% 636.6 80.83 1.07% 635.7
RFGSM 76.21 2.97% 414.0 76.20 2.82% 415.4

PGD 80.27 0.62% 621.7 80.24 1.48% 616.7
PGDL2 107.83 0.29% 600.4 107.59 0.99% 606.4
TPGD 91.91 0.09% 49.4 91.37 0.00% 50.6
APGD 80.42 0.99% 622.4 80.48 1.28% 622.5
AutoAttack 88.880 0.73% 88.8 89.13 0.71% 84.7

CW 105.70 1.77% 125.3 100.00 0.00% 106.0

DeepFool 101.09 2.11% 69.0 93.98 0.34% 98.4
SparseFool 73.86 3.75% 7.1 82.25 0.88% 1.2
OnePixel 73.84 9.81% 5.0 73.81 2.03% 5.0

Our-L1 71.97 13.29% 5.0 70.11 2.65% 5.0
Our-L2 71.81 22.35% 5.0 71.25 3.82% 5.0
Our-L∞ 70.48 4.17% 5.0 72.07 2.81% 5.0

Table 3
The attack results on CIFAR10, the number in bold denotes the best results, the higher
the better for the ADR and PSNR and the lower the better for the DTC.

Attacks ResNet VGG16

Measurements PSNR ADR DTC PSNR ADR DTC

FGSM 78.53 9.51% 3053.3 78.44 10.89% 2938.2
BIM 79.06 8.92% 2900.3 79.04 9.34% 2927.9
MIFGSM 78.50 9.51% 2956.5 78.46 10.41% 2985.8
FFGSM 81.44 4.32% 3053.9 81.42 5.50% 3056.4
DIFGSM 81.31 4.00% 1635.3 80.04 3.68% 3053.0
RFGSM 79.20 8.55% 2884.2 79.01 9.52% 3046.1

PGD 79.00 8.92% 3055.1 79.00 9.31% 3055.3
PGDL2 113.08 0.32% 2876.8 83.01 1.68% 3051.4
TPGD 79.05 3.82% 3054.7 79.80 4.50% 3056.0
APGD 82.45 2.54% 1377.8 82.42 3.44% 1382.7
AutoAttack 89.91 8.78% 266.98 89.78 1.74% 274.3

CW 108.22 0.14% 889.2 104.31 5.15% 308.3

DeepFool 91.30 1.19% 1807.2 104.49 0.11% 289.4
SparseFool 67.29 14.45% 315.1 74.37 16.43% 24.4
OnePixel 76.03 8.35% 15.0 77.47 12.13% 15.0

Our-L1 76.43 11.25% 14.9 78.48 8.23% 14.9
Our-L2 76.01 14.75% 14.9 75.91 19.45% 14.9
Our-L∞ 77.48 13.20% 14.9 76.53 10.22% 14.9

In the scenario of white-box attacks, we directly replace the shadow
model with the target model, whose output is directly used to guide
the generation of perturbations. We validated the performance on the
CIFAR dataset with ResNet as the target model. In this attack scenario,
we only compared with SparseFool and OnePixel as they have a limited
number of perturbed pixels as we do. For a fair comparison, while, we
could not set the number of SparseFool attack points directly, therefore
it is necessary to first get the number of perturbed points from it, and
then set the perturbed points with the same constant (it is 84 in this
setting) in OnePixel and our model, and the results are listed in Table 5.

From the table, we can see that OnePixel has the best performance
in both PSNR and ADR, while it spends the most time because it needs
time to search for the best points with an evolution-based approach.
But in some practical applications, it is unacceptable to wait for this
attack. SparseFool comes last in terms of ADR, and it takes more than
2 s to complete an attack on an image. While, from the last row, we
can see that our model achieves 75.26% in terms of ADR, which is in
2nd place, but the time it takes on a single image is 5e-4 s, which is
largely superior to the other two models. From this point, we can see
that our model is able to achieve efficient attacks in a fast way.
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Fig. 2. The attack results with different methods on CIFAR10.
Fig. 3. The attack results with different methods on Fashion MNIST.
4.2.2. Adversarial robustness
To assess the adversarial robustness of the model, we implemented

adversarial training with VGG16 on CIFAR10 using multiple models
and recorded the results in Table 6. The first column, labeled ‘‘AT’’,
represents the performance of the adversarially trained model when
subjected to the attack methods listed in that row. The remaining
columns represent the performance of the target model after adversarial
training under attack, with the attack methods listed in each column.

Our model achieved the best adversarial training results with an
accuracy of 89.52%. Our results show that the same model attack
usually performs the best, for example, the FGSM attack performs the
best when the adversarial training uses FGSM. From the table, we can
see that all adversarial training methods were able to prevent OnePixel
7

attacks, which had an accuracy of around 40% in all cases. This is likely
because OnePixel attacks only perturb a few pixels, making it difficult
for the model to improve its performance through adversarial training.
When using adversarial training with PGD, we found that FGSM also
had the best resistance to attack, followed by PGD which improved the
model’s performance under attack. Surprisingly, adversarial training
with CW was not able to resist other attack models, suggesting that
the optimization method with CW may have better-attacking perfor-
mance, but the perturbations it generates do not effectively improve
the model’s performance. Overall, our model had the best performance
under attack in almost all cases, indicating that the perturbations
generated by our model make the decision boundary more flexible and
improve the model’s robustness globally.
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Table 4
The attack results on CIFAR100, the number in bold denotes the best results, the higher
the better for the ADR and PSNR and the lower the better for the DTC.

Attacks ResNet VGG16

Measurements PSNR ADR DTC PSNR ADR DTC

FGSM 78.35 3.97% 3024.6 78.37 14.35% 3014.2
BIM 79.52 2.16% 2985.9 79.44 10.16% 2987.8
MIFGSM 78.52 3.10% 3026.5 78.52 12.85% 3027.7
FFGSM 81.44 0.68% 3041.0 81.39 5.96% 3039.9
DIFGSM 80.20 2.64% 3038.7 80.09 7.30% 3039.3
RFGSM 79.54 2.44% 3040.6 82.40 4.46% 3034.5

PGD 79.56 2.28% 3041.3 79.46 9.43% 3041.1
PGDL2 113.08 0.02% 3024.8 113.08 0.07% 3021.1
TPGD 79.38 3.14% 3040.8 79.48 12.51% 3041.3
APGD 98.54 0.02% 33.5 99.14 0.15% 22.4
AutoAttack 98.60 0.29% 28.1 98.76 0.03% 30.0

CW 102.15 0.02% 975.8 106.18 0.03% 986.4

DeepFool 108.30 0.03% 23.9 83.24 0.65% 30.6
SparseFool 90.30 0.71% 7.9 83.18 0.65% 30.4
OnePixel 78.28 1.51% 15.0 78.28 10.00% 15.0

Our-L1 79.49 14.83% 14.9 76.88 8.66% 14.9
Our-L2 76.33 18.41% 14.9 76.64 23.49% 14.9
Our-L∞ 77.22 15.38% 14.9 78.95 10.96% 14.9

Table 5
Attack performance in the white-box setting targeting ResNet on the
CIFAR10 dataset, Time denotes the time used to attack a single image,
measured in seconds (𝑠).
Attacks PSNR ADR Time

SparseFool 70.10 69.79% 2.2
OnePixel 72.25 84.03% 7.0
Our 69.04 75.26% 5e-4

Table 6
The results of the robustness improvement after the adversarial attack.

Method AT FGSM PGD CW SparseFool OnePixel

FGSM 84.53% 62.70% 2.76% 5.19% 7.43% 38.00%
PGD 84.63% 48.32% 26.85% 18.23% 14.25% 41.11%
CW 84.08% 13.70% 0.47% 20.47% 18.00% 47.00%
SparseFool 84.06% 8.34% 2.45% 14.09% 23.57% 40.30%
OnePixel 84.23% 8.61% 2.17% 13.76% 29.56% 51.52%
Our 89.52% 59.19% 36.68% 26.81% 35.80% 52.50%

4.3. Ablation study

There are many questions that need to be answered regarding the
validity of the proposed model. For example, are all the components of
the model necessary, would our model perform better if we increased
the number of perturbed pixels or increased the degree of perturbation,
do shadow models really work, and would a more powerful shadow
model help the performance of the model? In this section, to answer
these questions, we will validate the effectiveness of the proposed
structure and explore the impact of the properties of the proposed
model on the attack performance, i.e., the number of pixels, the bounds
of perturbation, and the capability of the shadow model.

4.3.1. Structure ablation
validate the proposed structure, we elaborate on whether the com-

ponents in the structure are in effect. Therefore, in the experiments, we
first remove the knowledge distillation, i.e., train a profound imitation
model, and use a randomly initialized model as the shadow model
(/SM). Then we remove the VAE training which is to process the
shadow attack (/NA) generation. And the results are listed in Table 7.

By analyzing the results presented in the table, it is clear that the
VAE component significantly improves the performance of the model.
This can be observed through the increase in PSNR values, which
indicate the stealthiness of the attack. The inclusion of this component
8

Table 7
The ablation study results with different components.

Model VGG ResNet

Measurement PSNR ADR PSNR ADR

ALL 75.90 19.45% 76.01 14.75%

/NA 76.42 9.19% 75.90 8.71%

/SM 80.45 4.03% 82.16 1.90%

Fig. 4. Model performance for a different number of perturbed pixels, i.e., the 𝑥-
axis in the figure. The line is the PSNR and the columns bar indicates the ADR. The
orange-brown color indicates the performance of ResNet and the blue color indicates
the performance of VGG16. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

is essential to achieving our goal of improving the stealthiness of the
attack.

Additionally, the shadow model plays a crucial role in the genera-
tion of adversarial examples. Without this component, the model would
lack the necessary guidance information and may produce confusing
training results. However, when this component is included, we see
improved PSNR values compared to other cases. This demonstrates the
importance of the shadow model in the proposed model.

4.3.2. Number of pixels
To answer the question of whether the number of pixels affects

the performance, we increase the maximum number of pixels that can
be perturbed in a linear manner and observe the performance of the
model. The results are shown in Fig. 4.

From the figure, it is evident that both ResNet and VGG16 ex-
hibit similar performance, with an increase in ADR at the expense
of a decrease in PSNR. This indicates that increasing the number of
perturbed pixels in the adversarial examples can improve the attack
decrease rate, but at the cost of reduced stealth. To achieve better
stealth, it is advisable to select a lower number of perturbed pixels.
Alternatively, one can choose a high number of perturbed pixels, but
no more than 100, to achieve a significant performance improvement
while maintaining a certain level of stealth.

Then, to evaluate the effectiveness of our model, we compared its
performance to that of FGSM and PGD under various levels of perturba-
tion. Specifically, we varied the number of perturbed pixels and plotted
the results in Fig. 5. The three nodes on each line represent perturbation
levels of 20, 50, and 100 pixels, respectively. Our model was tested
on two popular image classification networks, ResNet and VGG16, and
compared to the results of FGSM and PGD at each perturbation level.

From the results in Fig. 5, it is clear that our model outperforms both
FGSM and PGD on both ResNet and VGG16. In particular, our model
achieves the best ADR among the three methods, followed by PGD and
FGSM. However, our model has a relatively lower PSNR compared to
PGD. Overall, our model demonstrates superior performance in terms
of ADR while maintaining a competitive PSNR compared to the other
two methods.
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Fig. 5. The performance of the model with the different number of the perturbed
pixels. The orange-brown lines indicate the performance of the FGSM, the blue lines
are the performance of the PGD, and the red lines are the performance of our model.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 6. The performance of the model with different boundaries of the perturbation,
i.e., the 𝑥-axis in the figure. The line is the PSNR and the columns bar denotes the
ADR. The orange-brown color indicates the performance of ResNet and the blue color
indicates the performance of VGG16. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

4.3.3. Boundaries of perturbation
As we described before, we do not have a constraint on the degree of

perturbation as in the case of FGSM and PGD, nevertheless, what would
happen to the performance of the model if we introduce such a con-
straint? To verify this question, we set boundaries of the perturbation
value linearly and the results are illustrated in Fig. 6.

To further investigate the impact of perturbation on model perfor-
mance, we implemented a constraint on the degree of perturbation
in our testing. We varied the constraint on perturbation linearly and
recorded the results, as shown in Fig. 6. This allowed us to determine
the effect of imposing a constraint on perturbation on the model’s
performance.

As seen in the figure, the performance of our model improves as the
maximum bound of the perturbation increases. However, this improve-
ment comes at the cost of reduced stealth, as the attack becomes more
noticeable. When the maximum bound of the perturbation is less than
10, our model has essentially no performance, but when the bound is
larger than 100, the performance improves significantly. However, it
should be noted that these results may not be applicable in real-world
scenarios where there may not be a restrictive range on the degree of
perturbation.

4.3.4. Capability of shadow model
Another important question is whether shadow models affect per-

turbation learning and whether a more powerful model leads to a
more powerful perturbation generator? To verify this question, a linear
9

Fig. 7. The performance of the model when the shadow model is trained with different
epochs. 𝑌 -axis is the PSNR and the 𝑥-axis denotes the ADR, the size of the circle
represents the different training epochs i.e., the number under the circles.

increment in training epochs was used to train the shadow model. And
the results are shown in Fig. 7.

From the figure, we can see that there is a significant improvement
in ADR as the training epoch increases. From Section 4.3.1, we know
that the shadow model is the essential part of our proposed model.
We further validate here the effectiveness of a more powerful shadow
model that distills knowledge from the original model and will nicely
improve the attack performance of the model. Evidently, the purpose
of the shadow model is to generate perturbations instead of the target
model. In contrast to ADR, PSNR decreases modestly with increasing
training epochs, and this can also be seen from Figs. 4 and 6. The effect
of the model on the PSNR value is not substantial, i.e., our model has
a relatively good guarantee in terms of attack concealment.

5. Conclusions and future works

In conclusion, our proposed framework for the few-pixels attack
showed promising results in both effectiveness and efficiency compared
to other existing methods. The dual-decoder VAE and modified adver-
sarial loss helped to improve the effectiveness of adversarial learning,
and the extensive experimental results and ablation study validated
the validity of our model structure. However, there is still room for
improvement, as the training of the generative model can be time-
consuming and the perturbations may have negative impacts on the
PSNR. In future research, we will aim to develop a more effective
method for generating universal perturbations. Overall, this work rep-
resents a significant step forward in the field of few-pixel attacks, and
we believe it will have important implications for the security and
robustness of machine learning systems.
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