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a b s t r a c t 

In mental health assessment, it is validated that nonverbal cues like facial expressions can be indica- 

tive of depressive disorders. Recently, the multimodal fusion of facial appearance and dynamics based on 

convolutional neural networks has demonstrated encouraging performance in depression analysis. How- 

ever, correlation and complementarity between different visual modalities have not been well studied in 

prior methods. In this paper, we propose a sequential fusion method for facial depression recognition. For 

mining the correlated and complementary depression patterns in multimodal learning, a chained-fusion 

mechanism is introduced to jointly learn facial appearance and dynamics in a unified framework. We 

show that such sequential fusion can provide a probabilistic perspective of the model correlation and 

complementarity between two different data modalities for improved depression recognition. Results on 

a benchmark dataset show the superiority of our method against several state-of-the-art alternatives. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Major depressive disorder (MDD) is a psychological disorder 

hat exhibits feelings of sadness, loss, or anger that may impact 

 person’s usual social activities. At a global level, over 300 million 

eople of all ages suffer from different levels of depression, equiv- 

lent to 4.4% of the world’s population [1] . A depressive episode 

an be classified into a mild, moderate, or severe level, depending 

n the symptoms. Mild depression may bring difficulties in contin- 

ing with ordinary work and social activities. More seriously, the 

eeling of depression may occur comorbidity with self-mutilation 

2] , and depressed people are more likely to commit suicide than 

he general population [3] . Early detection of depressive or other 

ental disorders provides a possible way for mental intervention 

4] . 

In clinical practice, the diagnosis procedure for MDD can usu- 

lly be labor-intensive and highly relies on expertise observa- 

ions. Due to the increasing number of people suffering from MDD 

round the world, methods for automated depression analysis ap- 

ear to be urgent for objective and efficient diagnosis. Recently, au- 

omated depression diagnosis based on computer vision techniques 

as drawn increasing attention [5] , and the significance of the ver- 
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al cues for depression analysis has been demonstrated in various 

epression detection/recognition tasks [6–11] . Besides, visual cues 

ike facial expression and facial dynamics have also proven to be 

ffective in depression analysis [12–15] . This paper investigates fa- 

ial depression recognition, aiming to predict the depression level 

or a given face video based on the BDI-II metric [16] . 

While encouraging progress has been made over the past few 

ears, automated depression analysis in videos remains challeng- 

ng due to the following reasons. On the one hand, unlike those 

arge-scale image datasets (e.g., ImageNet [17] ) for visual recogni- 

ion [18] , the size of most existing depression datasets (e.g., AVEC 

014 [5] ) is relatively small due to the privacy concerns. While rep- 

esentation learning based on convolutional neural network (CNN) 

as been proved to be more effective than hand-crafted descriptors 

n visual-based depression recognition [15] , the lack of labeled data 

akes the model training with deep networks prone to over-fitting 

n practice. 

On the other hand, many learning methods in the literature 

ave been devoted to multimodal fusion of audio and/or video 

eatures for depression recognition [9,14,15] , which have demon- 

trated boosted recognition performance by exploiting the comple- 

entary information encoded in different modalities. However, es- 

ential correlation and diversity between different visual modali- 

ies have not been well investigated in previous visual-based meth- 

ds, especially for multimodal fusion of visual cues with deep CNN 

rchitecture. 

https://doi.org/10.1016/j.patrec.2021.07.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.07.005&domain=pdf
mailto:cambria@ntu.edu.sg
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Q. Chen, I. Chaturvedi, S. Ji et al. Pattern Recognition Letters 150 (2021) 115–121 

f

i

i

H

m

v

H

t

t

o

t

m

i

f

l

f

t

r

T

v

t

p

c

2

d

c

o

a

v

s

i

t

t

f

e

r

t

(

y

(

p

[

f

h

L

d

c

f

e

t

L

d

t

t

s

p

f

w

I

e

[

r

a

b

e

f

s

u

p

t

a

l

s

s

t

s

a

I

t

a

r

m

m

c

b

e

I

w

f

c

[

m

l

t

l

o

C

R

d

a

a

j

t

t

a

a

a

e

a

a

n

b

In this paper, we propose a multimodal deep learning approach 

or facial depression recognition to address these issues. Specif- 

cally, a sequential fusion of facial appearance and dynamics is 

ntroduced to facilitate such multimodal representation learning. 

ere, facial appearance and dynamics are adopted as the basis 

odalities in our multimodal fusion framework, as they have been 

alidated to be effective in visual-based depression diagnosis [15] . 

ence, a fusion between the two modalities is first operated on 

he blocks of a two-stream CNN. By such fusion of mid-level fea- 

ures in the CNN training, an initial interaction is conducted to 

ptimize the complementary patterns. Then, the extracted feature, 

ogether with the predicted label from the first stream (e.g., RGB 

odality), is fed into the second stream (e.g., Optical Flow modal- 

ty) to refine the final prediction. We show that such sequential 

usion can provide a probabilistic perspective about model corre- 

ation and complementarity between two different data modalities 

or improved depression recognition. We conduct experiments on 

he benchmark dataset (AVEC2014), and the results show the supe- 

iority of our method against several state-of-the-art alternatives. 

he main contributions of this paper are: 

• We proposed a sequential chained-fusion approach for depres- 

sion recognition. With a probabilistic perspective, the proposed 

approach models the correlation and complementarity between 

facial appearance and facial dynamics at several network lay- 

ers, such that the complementary and correlation information 

of different visual cues extracted from videos could be well ex- 

ploited in model learning ( Section 3 ). 
• We evaluate our approach on the benchmark dataset and em- 

pirically show improvement over several state-of-the-art alter- 

natives ( Section 4 ). 

The rest of this paper is organized as follows: Section 2 pro- 

ides a brief review of related work; Section 3 explains in de- 

ail the proposed sequential fusion method; Section 4 presents ex- 

erimental settings, results and discussions; finally, Section 5 con- 

ludes the paper. 

. Related work 

This section briefly reviewed two related topics: 1) visual-based 

epression recognition and 2) multimodal learning with deep ar- 

hitectures. 

Automated Depression Recognition . Depression analysis based 

n various behavioral signals has drawn increasing attention in the 

ffective com puting community. Such f easible signals include the 

ision- and speech-based cues of human communication. While 

everal works in the literature focus on this research topic, we are 

nterested in the visual-based approaches for depression recogni- 

ion. In the AVEC 2013 competition [19] , a facial descriptor named 

he local phase quantization (LPQ) [20] was used as a baseline for 

acial depression recognition, where the extracted LPQ features for 

ach video frame are further employed to train a support vector 

egression (SVR). In [7] , Cummins et al. used the pyramid of his- 

ogram of gradients (PHOG) [21] and the space-time interest points 

STIPs) [22] for extraction of behavioural cues for depression anal- 

sis. Meng et al. [9] proposed to use motion history histogram 

MHH) [23] feature to model motion in videos, and then use the 

artial least squares (PLS) [24] for training regression model. In 

13] , the motion cue is encoded by the LPQ-TOP feature extracted 

rom sub-volumes of the cropped facial regions, by which the be- 

avior pattern dictionary can be obtained based on sparse coding. 

In the AVEC 2014 competition [5] , the local motion descriptor 

GBP-TOP [25] and the SVR were employed as the baseline video 

escription and prediction model, respectively. In [26] , various lo- 

al motion features extracted from sub-volumes of the detected 

aces were used for training an SVR-based prediction model. Jan 
116 
t al. [27] proposed a 1D MHH based on some local descriptors 

o train a PLS regressor for final prediction. In [28] , the baseline 

GBP-TOP combined with LPQ was used as the video descriptor for 

epression prediction. 

The aforementioned depression recognition methods proposed 

o use hand-crafted descriptors, which are generally less effective 

o model and reveal high-level semantic cues. Recently, depres- 

ion feature learning based on deep CNNs achieves considerable 

rogress. For example, Zhu et al. [15] proposed jointly learning the 

acial appearance and dynamics based on a two-stream CNN, in 

hich two different features are fused at a fully-connected layer. 

mproved performance reported in their experiments indicated the 

fficacy of such a simple fusion manner. Most recently, Uddin et al. 

29] introduced a new two-stream network for deep spatiotempo- 

al feature learning, in which spatial information is extracted by 

 ResNet network, and they used a volume local directional num- 

er (VLDN) based feature descriptor to model facial motions. Zhou 

t al. [30] proposed a deep network named DepressNet to learn 

acial depression features with visual explanation, such that facial 

alient regions with different depression levels can be detected by 

sing the generated activation mapping. Later, Zhou et al. [31] pro- 

osed to jointly learn the feature embedding and label distribution 

o address the issue of deep representation learning on a limited 

mount of labeled depression data, and the improvement by such 

earning scheme was reported in their experiments in comparison 

everal state-of-the-art alternatives. Besides deep CNNs, there are 

everal methods for image feature learning such as binary descrip- 

or [32] . 

Multimodal Deep Representation Learning . In the multimodal 

etting, visual data consists of multiple input modalities [33–37] , 

nd each one may have a different representation and structure. 

ntuitively, useful representations could be learned from such mul- 

imodal data by fusing them into a joint representation to char- 

cterize the real-world semantic concept that the visual data cor- 

esponds to. In practice, however, it is much more difficult to 

odel and discover the nonlinear correlation and diversity across 

odalities than those among features in the same modality. Re- 

ently, a good number of multimodal deep learning methods have 

een proposed to better exploit useful information from differ- 

nt modalities for more robust visual analysis [15,29,36,38–46] . 

n [47] , Srivastava et al. proposed a multimodal learning method 

ith a deep Boltzmann machine (DBM) to jointly learn multimodal 

eature representations. They approached this by adding a con- 

atenated layer that connects DBMs from different modalities. In 

42,43] , multi-metric learning methods were applied to exploited 

ulti features of human faces. Yan et al. [42] proposed a jointly 

earning method to capture multiple features from multiple dis- 

ance metrics. In [43] , Hu et al. further studied multi-view metric 

earning in a sharable and individual way, which shown the superi- 

rity of sharing features from different view. In [39] , a two-stream 

NN with an additional multimodal fusion layer was proposed for 

GB-D object recognition. Motivated by the observation that the 

ata from different modalities may contain modal-specific patterns 

s well as common patterns, Wang et al. [36] proposed a shareable 

nd specific multimodal feature learning framework for RGB-D ob- 

ect recognition. Li et al. [44] proposed a global-local framework 

o extract pose, appearance and motion features for RGB-D ges- 

ure recognition. By imposing the representation learning of associ- 

tions between different modalities, Zolfaghari et al. [41] designed 

 chained multi-stream network to fully exploit the pose, motion, 

nd appearance cues for action classification and detection. Feicht- 

nhofer et al. [45] proposed a two-stream CNN architecture to fuse 

 spatial and temporal network at a convolutional layer instead of 

t the softmax layer, which boosted performance on action recog- 

ition problem with a substantial saving in parameters. To further 

oost performance of action classification and detection, Feichten- 
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Fig. 1. Overview of our proposed sequential fusion approach for facial depression 

recognition. The (mid- and high-level) features extracted from the first stream (RGB 

modality) together with the predicted label are fed into the second stream (dynam- 

ics modality) for refinement of the final prediction. 
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ofer et al. [46] presented SlowFast Networks for video recognition 

hich was inspired by biological studies on the retinal ganglion 

ells in the primate visual system. 

Our proposed method is related to the multimodal deep learn- 

ng methods for visual recognition, which aimed to fuse multiple 

esponses from the CNNs trained with different modalities of vi- 

ual data. However, our work differs from them in the fusion man- 

er. Our work aims at deep fusion between features from different 

odalities in a sequential manner, while only a simple fusion at 

he fully-connected layer was performed in [29] as well as [15] . 

ost similar to ours is the work [41] which also performed fusion 

n a chained manner; however, the fusion of mid-level features in 

he CNN training was not involved in their approach, and hence 

ur sequential fusion represents a more deep fusion mechanism 

hat can be more suitable for multimodal representation learning 

ith limited labeled depression data, as indicated in our experi- 

ents. 

. Our approach 

Predicting the severity of facial depression is a process of learn- 

ng spatio-temporal features related to human emotion categoriza- 

ion [48] from face videos. The facial appearance of a subject is 

ne of the important visual patterns for depression recognition. At 

he same time, facial dynamics characterized by optical flow cap- 

ures the temporal variations of appearance across frames. As such, 

e propose a sequential fusion approach to investigate the corre- 

ation and complementarity between two different data modalities 

or depression analysis. As shown in Fig. 1 , we use a two-stream 

etwork architecture, where the encoders for each stream have the 

ame backbone structure (can be any off-the-shelf CNNs). 

Fundamentally, depression estimation can be viewed as a re- 

ression task, and hence we employ the mean square error (MSE) 

s the loss function. Mathematically, the loss L is defined as: 

 = 

1 

2 N 

N ∑ 

i =1 

‖ y i − ˆ y i ‖ 

2 , (1) 

here N is the number of the samples, ˆ y i is the output prediction 

f the second stream of our network for the i th sample, and y i is

ts ground-truth label. 

.1. Appearance-CNN 

CNNs have been proved with powerful capability on image clas- 

ification tasks over large-scale image data. Conversely, CNN is not 
117 
 proper option to capture features from the dataset with a lim- 

ted size. For depression estimation, available datasets are usually 

ith limited data and subjects. To handle this issue, we employ 

he pre-training and fine-tuning strategies to train the facial ap- 

earance CNN (A-CNN). 

Due to time restrictions or computational restraints, it’s not al- 

ays possible to build a deep model from scratch which is the 

eason why we use pre-trained model. To achieve facial represen- 

ations, we train two pre-trained deep networks (e.g., GoogLeNet 

49] and ResNet-50 [50] ) over CASIA-WebFace database [51] , which 

s a public face recognition database containing 494,414 facial im- 

ges from 10,575 subjects. 

After the pre-training step, we can obtain the general facial fea- 

ures through the pre-trained model while those features are not 

elevant to facial depression. Hence, depression data are fed into 

he pre-trained model for fine-tuning, such that the final model is 

apable of accurate depression estimation. 

.2. Dynamics-CNN 

Along with facial appearance, facial dynamics is also an indis- 

ensable component in our proposed model. The dynamics-CNN 

D-CNN) is built upon the same backbone as the A-CNN with the 

ptical flow data. Unlike the static RGB data, facial dynamics model 

he motion patterns inherent in faces that can be highly indicative 

or visual depression analysis. 

We compute the optical flow with the duality-based approach 

52] , which is a decent method with sufficiently fast speed. To feed 

he optical flow data into the D-CNN, we transform the optical flow 

ignal into a 3-dimensional image data (x, y, m ) , where x , y and

 represent the x -component, y -component and the magnitude of 

he flow, respectively. For better observation and calculation, we 

ultiply each image by 16 and convert it to the closest integer 

etween 0 and 255 [53] . 

Similarly, we employ the same architecture, configurations, and 

oss used in the appearance CNN to train the dynamics CNN. The 

ifference lies in that the input to the dynamics stream is the flow 

mage computed from video frames, and there is no pre-training 

tep in D-CNN. 

.3. Sequential fusion 

Since Simonyan et al. [54] proposed a simple fusion framework 

ith two separate CNNs on raw images and optical flow, respec- 

ively, multi-stream architectures entered the public consciousness 

nd became a popular approach to handle multimedia tasks. 

The baseline fusions are illustrated in Fig. 2 , where the solu- 

ion (a) applies the normal concatenation to form the input fea- 

ures of a set of fully-connected layers, which combines features 

rom two streams directly, and the two CNNs are independent. In 

uch a case, the learning manners of the two streams exert a slight 

nfluence on each other. Furthermore, as the input to the dynam- 

cs, CNN is the optical flow between several sequential frames; the 

hanges between continuous frames are minor and difficult to dis- 

inguish. In order to achieve a compact and discriminative multi- 

odal deep representation, a proper fusion method is needed to 

ather features from facial appearance and dynamics. 

To integrate the two individual deep networks mentioned 

bove, we introduce a sequential fusion approach based on a two- 

tream architecture. By making use of the features from both 

odalities, a Markov chain is established to integrate the two 

treams, which may refine the depression prediction sequentially. 

onsidering different modality as the main input, a refined pre- 

iction is achieved by combining the hidden features (e.g., high- 

evel features) and the predictions from the previous stream (see 

ig. 2 (b) and (c)). However, such fusion is made only after the 
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Fig. 2. Different fusion baselines for facial depression recognition. (a) Normally concatenated features from the dynamics and appearance streams; (b) The features extracted 

from the dynamics stream together with the predicted label are fed to the appearance stream for final prediction; (c) The features extracted from the appearance stream 

together with the predicted label are fed to the dynamics stream for final prediction. 
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ully-connected layers, which means the mid-level features before 

he fully-connected layers have not been exploited for better fu- 

ion. With the limited promotion of the feature fusion, the refine- 

ent of the predictions is improved, though the improvement is 

ot significant. 

Unlike the baseline fusion schemes shown in Fig. 2 , our pro- 

osed sequential fusion (shown in Fig. 1 ) perform feature fusion 

ot only after the fully-connected layer, but also on the blocks of 

NNs, by which both high-level and mid-level features of the CNNs 

an be well exploited to model the correlation and complementar- 

ty between different data modalities. In what follows, we give a 

robabilistic interpretation for such a fusion mechanism. 

For different input modalities, we assume that the depression 

redictions are conditionally independent. Consequently, we can 

actorize the joint probability into the conditional probabilities ac- 

ording to the conditional independence property. In a Markov 

hain, we predict the outputs Y = { y 1 , y 2 , . . . , y S } on the given se-

uence of inputs I = { I 1 , I 2 , . . . , I S } with P (y | I) maximized. Due to

he Markov property, we have 

 (y | I) = P (y 1 | I) 
S ∏ 

s =2 

P (y s | I, y 1 , . . . , y s −1 ) (2)

To model the likelihood in (2) , the hidden feature and the pre- 

iction probability are respectively denoted by 

h s = f ([ h s −1 , CN N (I s ) , (y 1 , y 2 , . . . , y s −1 )]) , 

 (y s | I, y <s ) = N (w 

T 
s h s ; ȳ s , σ

2 ) (3) 

here s ∈ { 1 , 2 , . . . , S} , f is an activation function, h s −1 denotes the

idden feature from the previous stream, y s denotes the prediction 

f the s th stream, w s denotes the regression coefficient vector, ȳ s 
s the ground-truth label, and σ is a certain standard deviation of 

he Gaussian N . Here, CN N (·) denotes the convolutionary part and 

he first fully-connected layer of the network, which can be any 

ff-the-shelf backbones (e.g., VGG and ResNet). 

In the proposed approach, the prediction of the dynamics 

tream is made conditioned on the appearance stream as well as 

he input dynamics data, which means that the final prediction is 

ffected not only by the input of the current stream but also by the 

eatures and predictions from previous streams (see Fig. 1 ). When 
118 
he input modalities is I = { I a , I d } , we have: 

h a = CN N (I a ) , 

 (y a | I) = N (w 

T 
a h a ; ȳ a , σ

2 ) (4) 

nd 

h d = f ([ h a , CN N (I d ) , y a ]) , 

 (y d | I, y a ) = N (w 

T 
d h d ; ȳ d , σ

2 ) (5) 

s known to all, maximization of P (y d | I, y a ) is equivalent to the

inimization of the MSE loss defined in Eq. (1) . Hence, our se- 

uential fusion mechanism has a clear probabilistic interpretation. 

It should be noticed that depressed patients are usually slow to 

nitiate actions with stiff facial expressions. For depression anal- 

sis, motion features could be more discriminative than appear- 

nce cues. It is observed in our experiment that using the dynam- 

cs stream as the main stream to fuse the appearance stream can 

erform better prediction, and it also facilitates the training of the 

wo-stream network. In the inference stage, only the prediction of 

he mainstream is used as the final depression prediction. 

. Experiments 

To validate the effectiveness of our depression recognition ap- 

roach, we conduct experiments on the AVEC 2014 benchmark 

ataset and compare its performance with several state-of-the-art 

lgorithms as well as the baselines. In what follows, a description 

f the dataset, data pre-processing, and experimental setting are 

rst presented. Then, we present the results and analysis. 

.1. Dataset 

We conduct the experiments on a database of the Audio/Visual 

motion Challenge (AVEC) 2014 [5] , which is the most widely- 

sed depression sub-challenge database for depression recognition. 

n AVEC dataset, to evaluate the severity, a depression level score 

s measured by a self-reported 21 multiple-choice inventory–Beck 

epression Index (BDI) [55] . The BDI scores range from 0 to 63, 

here the lower score represents more mild symptoms. The score 

valuated in [0, 13], [14, 19], [20, 28] and [29, 63] indicate mini- 

al, mild, moderate and severe depression, respectively. For each 

ideo clip, there are 3–5 annotators predicting the BDI score. 
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Table 1 

Ablation study of our approach on AVEC 2014. 

Model MAE RMSE 

Appearance CNN 6.60 8.88 

Dynamics CNN 8.64 10.71 

Normal Concat 6.72 8.68 

Appearance(main) + Dynamics 6.71 8.58 

Appearance + Dynamics(main) 6.41 8.70 

DeepFusion (proposed) 6.16 8.13 

Table 2 

Depression prediction results with different back- 

bones on AVEC 2014. 

Model MSE RMSE 

Appearance CNN(VGG) 8.19 10.34 

Dynamics CNN(VGG) 9.54 11.49 

Normal Concat(VGG) 9.54 11.50 

DeepFusion(VGG) 7.54 9.79 

Appearance CNN(ResNet-50) 6.60 8.88 

Dynamics CNN(ResNet-50) 8.64 10.71 

Normal Concat(ResNet-50) 6.72 8.68 

DeepFusion(ResNet-50) 6.16 8.13 

Table 3 

Comparison with previous methods on AVEC 2014. 

Methods MAE RMSE 

LGBP-TOP + SVR [5] (2014) 8.86 10.86 

MRLBP-TOP + DPFV+SVR [59] (2018) 7.21 9.01 

SlowFast Networks [46] (2019) 6.78 8.40 

C3D(Global + Local) [60] (2019) 6.59 8.31 

VLDN + Bi-LSTM+TMP [29] (2020) 6.86 8.78 

DepressNet [30] (2020) 6.60 8.88 

DJ-LDML [31] (2020) 6.59 8.30 

Spectral-Representation [61] (2020) 5.95 7.15 

DLGA-CNN [62] (2021) 6.51 8.30 

DeepFusion (proposed) 6.16 8.13 
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In AVEC 2014, there are 84 subjects, and each subject needs to 

erform two different tasks named “Northwind” and “FreeForm”

ccording to the instructions. All subjects in the two tasks speak 

erman. There are 150 videos for each task, and the recordings 

ere equally split into three partitions: training, development, and 

est set. Each partition includes 50 videos and has similar distri- 

utions in terms of gender, age, and depression levels for the par- 

itions. All videos are recorded by webcam in a human-computer 

nteraction scenario, and each video is approximately 2-min length 

n average. There are at least three annotators per clip, and most 

lips are annotated by 5. 

.2. Data pre-processing 

As the raw data have a certain degree of noisy and redundant 

nformation which is irrelevant to depressive expressions. To ex- 

ract meaningful information from noise, it is necessary to apply 

ultiple pre-processing steps on the raw data before feeding it to 

he model. To avoid the waste of computing resources and speed 

p the training, subsampling is performed on the video frames 

ith an interval of 10 frames which is determined experimentally. 

To deal with the raw data, face detection and landmark localiza- 

ion of each subject in the video are implemented by Dlib [56] . Af-

er that, the facial region of an image size of 256 × 256 is cropped

nd aligned according to the eye locations. 

After the above steps, we compute optical flow over a sequence 

f facial regions extracted from each video clip. As the input to 

ynamics stream, optical flow is computed between two frames 

hich can capture facial motions known as face “flow images”. A 

flow image” has three components (x, y, m ) , where the first two 

hannels are x , and y flow values and the third channel is the mag-

itude of the optical flow normalized between 0 and 255 with a 

edian of 128. 

.3. Experimental setting 

We use two popular network architectures, i.e., VGG-11 

57] and ResNet-50 [50] , as the backbone of our two-stream net- 

ork to train the appearance and dynamic CNNs. In our exper- 

ments, the appearance CNN is pre-trained on a large-scale face 

ataset CASIA WebFace [51] , while the dynamics CNN is trained 

rom scratch. The MSE is adopted as the loss function for our de- 

ression regression. 

The total number of training iterations for the appearance and 

ynamics CNNs are 40 0,0 0 0 and 60 0,0 0 0, respectively. We set the

nitial learning rate to 0.001, and decrease the learning rate by 

olynomial decay with power equals to 0.5, and set the momen- 

um to 0.9 with a weight decay of 0.0 0 02. For the joint training,

he total number of iterations is 20 0,0 0 0 with an initial learning

ate of 0.0 0 01. 

We use the mean absolute error (MAE) and root mean 

quare error (RMSE) to measure the overall recognition perfor- 

ance. They are defined by MAE = 

1 
N 

∑ N 
i =1 | y i − ˆ y i | and RMSE = 

 

1 
N 

∑ N 
i =1 (y i − ˆ y i ) 

2 , where N is the number of data samples, y i and 

ˆ  i are the ground truth and the prediction for the i th sample. 

.4. Experimental results 

.4.1. Performance of individual models 

We first investigate the impact of different fusion models (see 

ig. 2 ) in our fusion framework for depression analysis. Six base- 

ines are defined for evaluation of the performance of individual 

odels: 1) Appearance CNN, 2) Dynamics CNN, 3) Normal Con- 

at: fusion by normal concatenation on the fully-connected layer 
119 
f the two-stream CNN, 4) Appearance (main)+Dynamics: Dynam- 

cs stream is fed to Appearance stream for sequential fusion, 5) Dy- 

amics (main)+Appearance: Appearance stream is fed to Dynamics 

tream for sequential fusion, 6) DeepFusion: Appearance stream is 

ed to Dynamics stream for a sequential fusion of both mid-level 

nd high-level features. 

As shown in Table 1 , our proposed DeepFusion achieves the 

AE/RMSE of 6.16/8.13, which consistently outperforms the other 

aselines. Specifically, two sequential fusion models (dynamics 

NN as the mainstream) perform better than other individuals, in- 

icating the efficacy of such fusion mechanism. On the other hand, 

e can see that appearance CNN as the mainstream for sequential 

usion may not be suitable for depression analysis, as the motion 

ues may play a more important role in features fusion for final 

rediction. Finally, the proposed DeepFusion performs better than 

ynamics (main)+Appearance, indicating that integration of mid- 

evel features in the sequential fusion framework can further boost 

he overall prediction performance. 

In addition, we investigate the impact of different backbones 

n our proposed approach. As shown in Fig. 2 , prediction models 

uilt upon ResNet-50 [50] consistently perform better than those 

uilt upon VGG-11 [57] . Also, our proposed DeepFusion achieves 

he best performance on both backbones in terms of MAE and 

MSE. 

.4.2. Comparison with previous methods 

We compared our proposed approach with several state-of-the- 

rt depression recognition methods, and the results are presented 

n Table 3 . For a fair comparison, the compared eight methods are 

ased on the visual modality (e.g., face videos). Specifically, six of 
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hem are also deep learning-based solutions, and the other two are 

hallow learning models with hand-crafted video descriptors. 

In [5] , the baseline model for AVEC 2014 employed the epsilon- 

VR with intersection kernel [58] trained using LGBP-TOP features. 

n the AVEC 2014 dataset, our approach beats the baseline ap- 

roach by dropping the MAE by 2.70 and RMSE by 2.83. In [59] ,

n SVR trained with the dynamic feature descriptors MRLBP-TOP 

nd DPFV achieved the MAE/RMSE of 7.21/9.01. Also, our approach 

utperforms this shallow learning-based solution by a significant 

argin. 

Our approach achieves the second-best performance on the 

VEC 2014 dataset when compared to other seven deep learning- 

ased works [29–31,46,60–62] . In [46] , the SlowFast networks 

ransferred from action recognition model achieved the MAE/RMSE 

f 6.78/8.40. In [60] , the combination of the global and local Con- 

olutional 3D networks achieved the MAE/RMSE of 6.59/8.31. In 

29] , the MAE/RMSE of 6.86/8.78 was achieved by utilizing Bi- 

STM, whose input is the output of a deep CNN and TMP. In a very

ecent work [62] , both local and global attention CNN are intro- 

uced for depression recognition and reduced the MAE/RMSE to 

.51/8.30. In [30] , deep depression representation with visual ex- 

lanation achieved the MAE/RMSE of 6.60/8.88, and later in [31] , 

he deep metric learning-based solution achieved the MAE/RMSE 

f 6.59/8.30. Our approach consistently outperforms the aforemen- 

ioned deep learning-based methods in terms of MAE and RMSE. 

he best-performed solution among the compared methods is the 

pectral representation of behavior primitives [61] , which achieved 

he MAE/RMSE of 5.95/7.15. 

. Conclusion 

In this paper, we proposed a deep multimodal learning method 

or the representation fusion of facial appearance and dynamics. 

o model the correlated and complementary depression patterns 

n multimodal learning, a chained-fusion mechanism is introduced 

o jointly learn facial appearance and dynamics in a unified frame- 

ork. We showed that such sequential fusion provides a clear 

robabilistic perspective of the model correlation and complemen- 

arity between two different data modalities for improved de- 

ression recognition. Experimental results on a benchmark dataset 

emonstrated the efficacy of our method when compared to sev- 

ral state-of-the-art alternatives. In future work, investigation of 

he private-share model for multimodal depression representation 

earning appears to be an interesting topic. 
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