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a b s t r a c t 

Research on building dialogue systems that converse with humans naturally has recently attracted a lot 

of attention. Most work on this area assumes text-based conversation, where the user message is mod- 

eled as a sequence of words in a vocabulary. Real-world human conversation, in contrast, involves other 

modalities, such as voice, facial expression and body language, which can influence the conversation sig- 

nificantly in certain scenarios. In this work, we explore the impact of incorporating the audio features 

of the user message into generative dialogue systems. Specifically, we first design an auxiliary response 

retrieval task for audio representation learning. Then, we use word-level modality fusion to incorporate 

the audio features as additional context to our main generative model. Experiments show that our audio- 

augmented model outperforms the audio-free counterpart on perplexity, response diversity and human 

evaluation. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

In recent years, data-driven approaches to building conversa-

tion models have been made possible by the proliferation of social

media conversation data and the increase of computing power.

Based on a large amount of conversation data, very natural-

sounding dialogue systems can be built by learning a mapping

from textual context to response using powerful machine learning

models [1–4] . Specifically in the popular sequence-to-sequence

(Seq2Seq) learning framework, the textual context, modeled as a

sequence of words from a vocabulary, is encoded into a context

vector by a recurrent neural network (RNN). This context vector

serves as the initial state of another RNN, which decodes the

whole response one token at a time. 

This setting, however, is oversimplified compared to real-world

human conversation, which is naturally a multimodal process [5,6] .

Information can be communicated through voice [7] , body lan-

guage [8] and facial expression [9] . In some cases, the same words

can carry very different meanings depending on information ex-

pressed through other modalities. 

In this work, we are interested in audio signals in conversation.

Audio signals naturally carry emotional information. For example,

“Oh, my god!” generally expresses surprise. Depending on the

voice shade, however, a wide range of different emotions can

also be carried, including fear, anger and happiness. Audio signals

can have strong semantic functions as well. They may augment
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r alter the meaning expressed in text. For example, “Oh, that’s

reat!” usually shows positive attitude. With a particular voice

hade of contempt, however, the same utterance can be construed

s sarcastic. Stress also plays a role in semantics: “I think she stole

our money” emphasizes the speaker’s opinion on the identity

f the thief while “I think she stole your money” emphasizes the

peaker’s opinion on the identity of the victim. 

Therefore, while identical from a written point of view, utter-

nces may acquire different meanings based solely on audio infor-

ation. Empowering a dialogue system with such information is

ecessary to interpret an utterance correctly and generate an ap-

ropriate response. 

In this work, we explore dialogue generation augmented by au-

io context under the commonly-used Seq2Seq framework. Firstly,

ecause of the noisiness of the audio signal and the high dimen-

ionality of raw audio features, we design an auxiliary response

lassification task to learn suitable audio representation for our di-

logue generation objective. Secondly, we use word-level modality

usion for integrating audio features into the Seq2Seq framework.

e design experiments to test how well our model can generate

ppropriate responses corresponding to the emotion and emphasis

xpressed in the audio. 

In summary, this paper makes the following contributions: 

(i) To the best of our knowledge, this work is the first attempt

to use audio features of the user message in neural con-

versation generation. Our model outperforms the baseline

audio-free model in terms of perplexity, diversity and hu-

man evaluation. 

https://doi.org/10.1016/j.neucom.2019.12.126
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.12.126&domain=pdf
mailto:cambria@ntu.edu.sg
https://doi.org/10.1016/j.neucom.2019.12.126
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(ii) We perform extensive experiments on the trained model

which show that our model captures the following phenom-

ena in conversation: (1) Vocally emphasized words in an ut-

terance are relatively important to response generation. (2)

Emotion expressed in the audio of an utterance has influ-

ence on the response. 

. Related work 

Massive text-based conversation data has driven a strong inter-

st in building dialogue systems with data-driven methods. The

eq2Seq model, in particular, has been widely used due to its

uccess in text generation tasks such as machine translation [10] ,

ideo captioning [11] and abstractive text summarization [12] .

eq2Seq employs an encoder–decoder framework, where the con-

ersational context is encoded into a vector representation and,

hen, fed to the decoder to generate the response [13] . Under the

ext-based Seq2Seq framework, a large number of works have been

one on improving the content quality of the response, such as

iversity promotion [2,14] , integrating emotional information [15] ,

nd handling unknown words [16] . 

In contrast to the popular text-only assumption, however, hu-

an conversation naturally involves multiple modalities. 

Firstly, the context of conversation can be multimodal. For

xample, in image-grounded conversation [17] , two interlocutors

enerate conversations based on a shared image. For this task, vi-

ual features of the image need to be infused into the context vec-

or. Alamri et al. [18] proposed Visual Scene-aware Dialogs, a sce-

ario where the dialogue system discusses dynamic scenes with

umans. A scene, in the form of a short video, is presented to

he interlocutors as the conversational context. For this task, Hori

t al. [19] incorporated techniques for multimodal attention-based

ideo description into an end-to-end dialogue system. Audio and

isual features that come from deep video description models are

sed to augment the context vector. Saha et al. [20] proposed a

arge domain-aware multimodal conversation dataset where shop-

ers and sales agents converse about products in the fashion do-

ain. Each conversational turn is composed of text and corre-

ponding images being referred to. For this scenario, Agarwal et al.

21] proposed a multimodal extension to the Hierarchical Recur-

ent Encoder–Decoder (HRED) [22] for in-turn multimodality and

ulti-turn context representation. 

Secondly, human conversation itself involves multiple channels

f information. Voice, body language and facial expressions all play

oles in conversation. In an ideal human-machine conversational

ystem, machines should understand this multimodal language. In

he literature, this information has seen use in conversation anal-

sis. Yu [23] proposed to model user engagement and attention

n real time by leveraging multimodal human behaviors, such as

miles and speech volume. Gu et al. [6] performed emotion recog-

ition, sentiment analysis, and speaker trait analysis on conversa-

ion data using a hierarchical encoder that formulates word-level

eatures from video, audio, and text data into conversation-level

eatures with modality attention. 

Our method of word-level modality fusion has already seen use

n multimodal sentiment analysis. In [24] , the RNN, which acts as

he utterance encoder, takes a concatenation of audio, video and

ext features as input at every time step. On the Interactive Emo-

ional Dyadic Motion Capture (IEMOCAP) dataset [24,25] showed

onsiderable improvement on dialogue emotion classification accu-

acy by integrating audio features. This result motivates our work –

ince incorporating audio features improves emotion classification

ccuracy in conversation and emotion is important to response

eneration [15] , we hypothesize that incorporating audio features

mproves response generation. 
. Model 

.1. Audio representation learning 

Raw features extracted from audio sequences are high-

imensional and noisy. They are not suited as direct input to the

ialogue generative model. Therefore, we need an audio represen-

ation learning method to reduce audio feature dimensions and

lso make it suitable for the dialogue generation task. 

For this purpose, we design an auxiliary response classification

ask based solely on audio features. 

Specifically, we construct a set of < context, response, la-

el > triples, where label is binary indicating whether the context

nd response combination comes from a real conversation dataset

 or is randomly assembled. The goal of this task is to predict label

ased on the < context, response > pair. 

Following [26] , our classification model is defined as: 

f (c, r) = sigmoid (c T W r) , (1) 

here c and r are representations of the context c and response r

espectively. Matrix W is model parameter. 

We use a universal sentence encoder [27] for the representa-

ion of response r . For the purpose of finding the best audio con-

ext representation, c is determined only by audio features a i of

ndividual words in the context: 

 = a v g(P (a i )) , i ∈ [0 , L ) , (2) 

here P is a perceptron and L is the number of words in the con-

ext. The model is shown in Fig. 1 . 

This model is trained on a conversation dataset D for best clas-

ification accuracy using mean squared loss between label and f ( c,

 ) in Eq. (1) . After training, the output of the perceptron 

˜ a i = P (a i )

s taken as the word-level audio representation used in the gener-

tive dialogue systems. 

.2. Audio-augmented Seq2Seq model 

We build upon the general encoder–decoder framework which

s based on sequence-to-sequence (Seq2Seq) learning [28] . The en-

oder represents a user message (context) X = x 1 x 2 . . . x n with hid-

en representations H = h 1 h 2 . . . h n , which is briefly defined as be-

ow: 

 n = LSTM E (h n −1 , e (x n )) , (3)

here LSTM E is a long short-term memory (LSTM) network [29] . E

enotes encoder. The decoder takes as input a context vector c̄ t−1 

roduced by an attention mechanism and the embedding of a pre-

iously decoded word e (y t−1 ) , and updates its state s t using an-

ther LSTM: 

 t = LSTM D (s t−1 , [ ̄c t−1 ; e (y t−1 )]) , (4)

here D denotes decoder. The decoder generates a token by sam-

ling from the output probability distribution which is determined

y c̄ t . 

Following [24] , we use a simple word-level embedding concate-

ation method for integrating audio features into word representa-

ion: 

 (x n ) = [ w n ; ˜ a n ] , (5)

here w n is the traditional word embedding and 

˜ a n is the word-

evel audio representation. Thus, in our new Audio-Seq2Seq model

 Fig. 2 ), the word representation contains both textual and audio

nformation. 
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Fig. 1. A response classification model is used as the auxiliary task for audio representation learning. 

Fig. 2. Audio-Seq2Seq model. 
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Table 1 

Initial number of utterances, number of utterances after preprocessing, 

average length of utterances, development set sizes, test set sizes and 

vocabulary sizes for IEMOCAP and MELD datasets. 

IEMOCAP MELD 

No. utt. 10,039 13,708 

Preproc. no. utt. 7901 12,274 

Avg utt. length 15.26 10.69 

Dev. set size 1000 1174 

Test set size 901 1000 

Vocabulary size 2171 3123 
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. Experiments 

.1. Dataset 

Most of the existing and consolidated datasets used in dialogue

ystem related research come with textual content only [26,30] .

he predominance of text-only datasets can be seen as a conse-

uence of both the ease with which this type of data can be ac-

uired, and the lack of a real demand of multimodal conversation

ata until recent times. Fortunately, along with the growing inter-

st in multimodal systems, there has also been an increase in the

roliferation of datasets fit for our task. We experiment with two

uch datasets, the IEMOCAP [25] and the Multimodal EmotionLines

ataset (MELD) [31] . 

IEMOCAP was designed with the main intent of providing a cor-

us of dyadic conversations capable of conveying emotions. Two

ypes of dialogue sessions were created for IEMOCAP to achieve

his task: scripted and spontaneous sessions. In the scripted case,

wo actors, a male and a female, were asked to rehearse some

reviously memorized scripts, as this supposedly leads to a more

enuine expression of emotions than directly reading off a script.

n the spontaneous case, the actors were given more liberty to

se their own words to discuss about selected emotion-evoking

opics. This supposedly allows the actors to express more natural

motions. The dataset contains a total of 10,039 utterances with

heir corresponding audio segments. 

MELD is a dataset containing utterances from the TV series

riends . For each utterance multimodal information in the form of

ext, audio and video is provided. MELD consists of 1433 dialogues

or a total of 13,708 utterances. 

These two datasets, IEMOCAP in particular, are suitable for our

urposes as the audio component is strongly representative of the

peaker’s emotional state and plays a pivotal role in the meaning

o be conveyed. 

.2. Experiment details 

.2.1. Data preprocessing 

From IEMOCAP and MELD set of dialogues we extract < sentence,

esponse > pairs by taking successive utterances within individ-

al dialogues. Formally, from dialogue d i = { u 1 , . . . , u n i } , where

 1 , . . . , u n i are the utterances composing the dialogue, we extract

he set of pairs { < u 1 , u 2 > , . . . , < u n i −1 , u n i > } . From the resulting

airs we create a vocabulary, for each of the datasets, contain-

ng only the terms with more than one occurrence in the respec-

ive corpus and that are present in the standard English vocabu-

ary [32] and those that are not present in the English vocabulary

ut occur ten or more times in the dataset. Our final vocabulary

izes are 2171 for IEMOCAP and 3123 for MELD. 

Further, we also remove all the sentences that denote the end

f a dialogue. After these procedures we end up with a total of

901 utterances for IEMOCAP and 12 , 274 for MELD. 

The audio segments provided within the datasets are given at

 sentence granularity. We conduct word alignment and obtain

ord-level audio features with the following procedure: 

(i) We first use the GENTLE forced aligner [33] to find the start

and end timestamps of each word within a sentence. 

(ii) Then, with OpenSMILE [34] , we extract 6373 raw audio fea-

tures for each word. We use the IS13_ComParE.conf configu-

ration [35] that has been widely used in emotion recognition

tasks [31,36] , rendering it a suitable choice for our case, as

emotion and response generation are closely tied concepts

that influence one another in human conversation. 

The shorter, faster-paced and overall more noisy dialogues of

ELD result in the failure of GENTLE to correctly align the words,
r in the inability of OpenSMILE to extract the audio features, of

round 23% of the words, whereas for IEMOCAP only around 7% of

he words are left without corresponding audio features. For these

ords we use zero vectors as features. We randomly sample ut-

erances from the datasets to split into training and development

ets. In Table 1 , we report some of the most prominent statistics

egarding the datasets we operate on. 

.2.2. Model training details 

In our audio representation learning model ( Section 3.1 ), the re-

ponse sentence embedding given by the universal sentence en-

oder has size 4096. During the training process, the best audio

epresentation extractor is obtained at the point when the classifi-

ation accuracy on the development dataset is the highest. 

We use the Seq2Seq model with Luong attention mecha-

ism [37] as the backbone of our main audio-augmented model.

t is a pruned version of the main model ( Fig. 2 ) that does not use

udio features in its word-level representation. After being trained

n a large text-based conversation dataset, the resulting model pa-

ameters are transferred to the main model as initialization of its

arameters corresponding to textual input. 

A 3.3M Reddit Conversation Dataset [38] is used for this

urpose. We filter it using the vocabularies previously created

or the audio conversation datasets. Specifically a conversation

air < u j , u j+1 > is removed if it contains more than one out-of-

ocabulary term. 

Our Audio-Seq2Seq model uses textual word embeddings of

ize 100 while the audio representation has size 25, which finds

ustification both intuitively, as although audio plays a part in hu-

an conversation, text is still most important as it carries semantic

nformation directly, and experimentally on the auxiliary response

lassification task (Section 4.3.1 ). 

We follow [39] for most of the hyperparameter settings. All

eneration models are trained for 50,0 0 0 steps with batch size 256

fter initialization with the pretrained model. The learning rate is

et to 0.1. Dropout rate is 0.3. We use 2 layers of hidden units.

eeping audio representation fixed at 25, we search for the op-

imal text embedding dimension in 10, 25, 50, 10 0. 10 0 yields the

est results. By manually inspecting the generated responses at dif-

erent steps, we find that they are most natural-sounding when

he models slightly overfit. In contrast, the models generate overly

imple responses when the development perplexity is lowest. This

s due to the fact that the audio conversation datasets are relatively

mall. We manually choose the best checkpoint for testing based

n human perception of response quality on the development set

fter the models start overfitting. 

.3. Experiment results 

.3.1. Results on audio representation learning 

The results are shown in Table 2 . The fact that the accuracies

re much higher than 50% indicates that audio features indeed

arry information that is relevant to conversation. The accuracies

how only a slight improvement in spite of a substantial increase
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Table 2 

Auxiliary response classification task accuracy varying the dimension of 

the audio representation. 

Dimension 

Dataset 25 50 100 

IEMOCAP 59.4% 62.4% 61.8% 

MELD 54.8% 54.8% 54.6% 

Table 3 

Statistics on IEMOCAP. 

Metric 

Model Perplexity Diversity Human preference 

Seq2Seq 36.83 ± 0.34 805 ± 10.5 44.4% 

Audio-Seq2Seq 31.13 ± 0.31 831 ± 12.8 55.6% 

Table 4 

Statistics on MELD. 

Metric 

Model Perplexity Diversity Human preference 

Seq2Seq 47.83 ± 0.44 567 ± 8.7 46.5% 

Audio-Seq2Seq 46.19 ± 0.49 629 ± 10.0 53.5% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Number of responses by the corresponding model that are deemed as 

better according to AMT judges. 

Audio-Seq2Seq Seq2Seq 

IEMOCAP 354 283 

MELD 359 313 

Table 6 

Samples produced by Audio-Seq2Seq. Considering the tone of the context, the re- 

sponses Audio-Seq2Seq produced are more appropriate. 

Context Seq2Seq 

Response 

Audio-Seq2Seq Response 

because i know you’re at a 

desk right now in your 

corporate building and 

you’re going to send me a 

check for sixteen dollars and 

forty two cents ! 

right, ok. oh, no, no, no, no, no. i 

don’t know. i don’t 

know. it’s not what i 

can do. 

what time is it ? god, this is 

great, isn’t it ? i can’t 

believe it. 

yeah, it is okay, all right. just just 

calm down 

no. it’s his newspapers is what 

it is now every month 

there’s a new boy comes 

home and larry’s going to be 

the next one. 

what ? alright. alright. alright 

just listen. 
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1 All utterance samples displayed in this paper have corresponding audio files in 

the supplementary material. 
in dimension moving up from 25, which is another reason why 25

is the size of the audio representation that is adopted in all the

experiments. 

4.3.2. Perplexity, diversity and human evaluation 

Fully automated evaluation of non-task-oriented open-domain

dialogue systems remains an open challenge [40] . Human judg-

ment of response quality is still the most reliable criterion. 

In this work we consider two automatic metrics in addition to

human judgment. The perplexity of the model on a ground-truth

response S is defined as: 

per (S) = P (w 1 , . . . , w n ) 
(− 1 

n ) = 

n 

√ 

1 

P (w 1 , . . . , w n ) 

= 

n 

√ 

n ∏ 

i =1 

1 

P (w i | w 1 , . . . , w i −1 ) 
. (6)

The perplexity of the model on a set of responses is the average

over all ground-truth responses composing the set. 

Diversity is defined as the number of unique words generated

by the model over the test set. Lack of diversity and tendency to

generate similar, short responses regardless of the different inputs

is a notorious problem in generative conversational models [41] . A

model that generates interesting and information-rich responses is

characterized by high diversity. Automatic and human evaluation

results are shown in Tables 3 and 4 . ± value indicates standard

deviation. We see that the Audio-Seq2Seq model achieves lower

perplexity and higher diversity on both datasets. 

A number of samples were manually selected from the test set

for human evaluation. During this process, we only chose samples

with high-quality user messages, considering both audio and text.

A sample is excluded if the audio is noisy or the user message is

too short or generic. 

We conducted pair-wise comparisons between responses gen-

erated by the Audio-Seq2Seq model and the Seq2Seq model. Seven

judges were recruited on the Amazon Mechanical Turk (AMT) plat-

form. After listening to the audio of the user message, the judges

were asked to select the best response from those generated by

the two models. We asked the judges to follow two rules: (1)

Prefer the response that is compatible with the tone of the user
essage. (2) Prefer longer and more informative responses. The re-

ults of the judges’ evaluation are shown in Table 5 . 

Table 6 shows successful cases where the responses produced

y the Audio-Seq2Seq model suit the audio context better. 1 For ex-

mple, in the second case, the voice of the user message shows ex-

itement and restlessness, which is captured by the “calm down”

n the response. 

.3.3. Emotional appropriateness 

Audio features can be strongly indicative of the speaker’s

motion, and thus have influence on the response. In order to

uantitatively evaluate the ability of our model to generate emo-

ionally appropriate responses, we design an experiment with

n artificially constructed set of 200 audio message samples of

wo different emotional states. Specifically, 100 textual message

amples are selected from the test set and for each sample we

anufacture two audio segments of different emotions by availing

urselves of the MARY Text-To-Speech system (MaryTTS) [42] . 

Following Russell’s Circumplex model of affect [43] we vary

he valence dimensions of the synthesized audio segments. With

rousal and valence in the range [0,1], we use a fixed arousal value

f 0.9 combined with the two valence values 0.1 and 0.9. When

alence = 0.9, the synthesized speech is fast and highly-pitched,

xhibiting an excited emotional state. Whereas when valence =
.1, the synthesized speech is slow and calm. Our Audio-Seq2Seq

odel generates two responses corresponding to those two au-

io segments of different emotion states. To evaluate how well

 response matches an emotional state, we shuffle the two re-

ponses and ask human judges to match audio segments with the

esponses to see if the results agree with the model’s. 

This association task performed by three judges shows that hu-

an evaluation tends to agree with the responses generated by

he model. Details are given in Table 7 . Table 8 shows cases where

he model seems to be able to perceive the emotional state of the

peaker and adapt its response accordingly. When the audio ex-

resses an excited state (valence = 0.9), the model is able to tune

ts response in a suitable manner. For instance in the first sample
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Fig. 3. The attention of a word in the source sequence is positively correlated with both duration and maximum amplitude. 

Table 7 

Percentage of cases on which the judges’ verdicts agree or disagree with the model. 

We also report the cases for which the judges were not able to make an association. 

Model Agree Disagree Cannot determine 

IEMOCAP 25.4% 15.1% 59.5% 

MELD 28.2% 16.7% 55.1% 

t  

a  

I  

Table 8 

MaryTTS samples. 

Context Valence = 0.1 Valence = 0.9 

Turn it off it’s driving 

me mad. 

I won’t. Well, do try to control 

yourself darling. 

okay that’s helpful. 

thanks. 

i’ve been trying to 

work this backwards 

this is all this is unfair. 

0  

s  

s  

v

he second response shows a strong correlation with the excited

nd agitated state of the speaker by asking him to calm down.

n the second sample, the higher rate with which the valence =
.9 context is uttered due to the excited state makes the speaker

ound less sincere thus eliciting a stuttered and complaining re-

ponse as compared to the more composed and calm one when

alence = 0.1. 
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Table 9 

The correlation between word attention and duration/maximum amplitude on 

IEMOCAP. 

IEMOCAP Pearson’s r Spearman’s ρ

Attention/duration 0.418 0.384 

Attention/max amp. 0.096 0.128 

Table 10 

The correlation between word attention and duration/maximum amplitude on 

MELD. 

MELD Pearson’s r Spearman’s ρ

Attention/duration 0.312 0.334 

Attention/max amp. 0.094 0.069 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

-  

P

A

 

o  

S

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

 

 

 

 

4.3.4. Attention on vocally emphasized words 

In a conversation, vocally emphasized words in an utterance are

most important to information communication. To evaluate how

well our model captures this phenomenon, we calculate the cor-

relation between the volume/duration of the audio segments of

words in the user message and the attention the words get dur-

ing the generation process. 

We take the length of the audio segment of an individual word

as the duration of that word and Maximum amplitude is used to

indicate volume . 

For calculating attention on a word in the message, we sum

all attention scores it gets during the response generation pro-

cess. Specifically, for the generation of response word y t , the at-

tention score on message word x i is a it . For the generated response

[ y 1 , y 2 . . . y n ] , the total attention on x i is a i = 

∑ n 
t=1 a it . 

We normalize attention, duration and maximum amplitude by

dividing them by average values over the message. Pearson and

Spearman correlations are calculated on attention-duration and

attention-maximum amplitude pairs. The results are shown in

Tables 9 and 10 . On both datasets our experiment shows rela-

tively strong positive correlation between attention and duration.

For attention and maximum amplitude, however, our calculation

only shows slightly positive correlation. This implies that in our

dataset, length is more indicative of a wordâs importance to the

dialogue system than volume. However, it cannot be generalized

without more experiments on more datasets. 

Two examples are shown in Fig. 3 . In the message “turn it off

it’s driving me mad”, “off”, “driving” and “mad” are vocally empha-

sized. Accordingly, attention scores on those three words are rela-

tively high. In a shorter example, “oh that’s attractive”, the word

“attractive” contains the most semantic information. It is vocally

emphasized and gets the most attention. 

5. Conclusion 

In this work, we augmented the common Seq2Seq dialogue

model with audio features and showed that the resulting model

outperforms the audio-free baseline on several evaluation metrics.

It also captures interesting audio-related conversation phenomena.

Although only using text in dialogue systems is a good-enough

approximation in a lot of scenarios, other modalities (i.e., video

and audio) have to be integrated before automatic dialogue sys-

tems can reach human performance. Our work belongs to such a

line of research that strives to build multimodal dialogue systems. 
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