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Abstract—Thanks to recent advances in machine learning,
some say AI is the new engine and data is the new coal.
Mining this ‘coal’ from the ever-growing Social Web, however,
can be a formidable task. In this work, we address this problem
in the context of sentiment analysis using convolutional online
adaptation learning (COAL). In particular, we consider semi-
supervised learning of convolutional features, which we use to
train an online model. Such a model, which can be trained in
one domain but also used to predict sentiment in other domains,
outperforms the baseline in the range of 5-20%.

Index Terms—Online SVM, Sentiment Prediction, Domain
Adaptation

I. INTRODUCTION

In recent years, sentiment analysis has become increasingly
popular for processing social media data on online communi-
ties, blogs, wikis, microblogging platforms, and other online
collaborative media. Sentiment analysis is a branch of affective
computing research that aims to mine opinions from text (but
sometimes also videos) based on review helpfulness and user
intent. Sentiment analysis has raised growing interest in the
business world, due to the remarkable benefits to be had
from financial forecasting [1], marketing [2], healthcare [3],
dialogue systems [4], and many more. The aim of the paper
is to predict the sentiments of text posted on the social media.
However, such content is continuously posted. Hence, we need
a model that can adapt to new sentences without the need for
retraining. Table I illustrates two product reviews with positive
and negative star ratings. We can see that there are ‘neutral’
or ‘negative’ comments in the positive review and vice-versa.

Sentiment analysis techniques can be broadly categorized
into symbolic and sub-symbolic approaches: the former in-
clude the use of lexicons, ontologies, and semantic net-
works [5] to encode the polarity associated with words and
multiword expressions; the latter consist of supervised [6],
semi-supervised [7] and unsupervised [8] machine learning
techniques that perform sentiment classification based on word
co-occurrence frequencies. Among these, the most popular
recently are algorithms based on deep neural networks, genera-
tive adversarial networks [9] and capsule networks [10]. There
are also some hybrid frameworks that leverage both symbolic
and sub-symbolic approaches, e.g., sentic computing [11].
Most machine learning based models use pre-trained word
vectors are good at capturing analogy questions [12].

Fig. 1. Learning phrases in a sentence using convolution. Each word is
represented by a pre-trained vector. A bi-gram feature ‘dont like’ is learned
to classify negative reviews.

For example, a gender relation from man to women is same
as one from king to queen. Another example is plural relation
from king to kings is same as one from queen to queens
in word vectors. For effective business decision-making, it is
critical to keep track of all product and service reviews in real
time as these get continuously posted online [13]. It would
be computational slow to keep retraining the classifier using
the entire dataset. To this end, we use online learning that
can update the model with a single sample and then discard it
from the memory. This is achieved by constructing a Gaussian
kernel classifier where the mean and variance are updated
using each new sample. Since it has no prior knowledge as
to how many training observations will be presented, it can
generalize better to sequential data [14].

While online learning has extremely low complexity, how-
ever the convergence to global optima is slow and the accuracy
of the model is low. To overcome this problem, we use
convolutional neural networks to extract significant phrases
from the sentences [15]. In such a model, we are able to
learn a dictionary of features that is portable across products
and tasks [16]. In order to determine the context of words
in different domains we use known word vectors of high-
frequency bi-grams as a prior to the online update. For each
domain we identify the most common bi-grams with positive
and negative polarity. Word vectors are currently available only
for a few bi-grams, hence we construct a prior based on these
bi-grams.



TABLE I
CHANGE IN POLARITY OF SENTENCES IN A SINGLE REVIEW OVER TIME. WEAK REVIEWS HAVE MIXED SENTIMENTS.

Review Polarity Sentence Polarity Sentence

Negative

Neutral I have bought and returned three of these units now
Negative Each one has been defective, and finally I just gave up on returning the system
Negative The DVD player constantly gives “Bad Disc” errors and

skips if there is even the slightest smudge on a disc

Positive

Positive It’s speedy and space saving and inexpensive
Neutral I bought this to replace my Belkin because the Belkin needed to be plugged in
Positive This one is powered by your computer so there’s no extra power cords, which is a big plus to me

The organization of the paper is as follows: Section III
describes the CDBN model and how a RNN is used to model
a sequence of sentences; next, Section IV describes online
learning of non-stationary sentences; Section V validates the
proposed method on two benchmark datasets; finally, Sec-
tion VI proposes concluding remarks.

II. RELATED WORK AND CONTRIBUTIONS

Traditional machine learning models need to use all the
available training data to create a classifier. Hence, if new
training data is provided the model has to be re-trained again
with the update dataset. This is extremely slow for microblogs
such as Twitter where people are constantly posting new
reviews every second. In contrast, online learning models
update the model using only a single new samples and discard
it from memory. Lifelong learning is another batch learning
algorithm for multi-task sentiment problems [17]. Here, the
model learned on the first task is used as a prior for the second.
The second is used as a prior for the third and so on. Hence
lifelong learning still requires the entire data for a domain to
be available during training.

To improve the accuracy of online learning, in [18], the
authors introduced a new type of regularization that considers
the average weight learned in all iterations. Their method
required a lot of memory and was computationally slow.
We address this problem by reducing the dimensionality of
the sentences using convolutional kernels. Another challenge
while training such as model is that reviews from different
products may have opposite polarity for the same words.
In order to create a generalized classifier, a semi-supervised
classifier was proposed in [19]. Since their model used offline
learning it is not suitable for live Twitter streams.

Another author in [20], applied online learning to word
vector model of sentences. Since it is difficult to understand
the difference in word vectors of words such as ‘actor’ and ‘ac-
tress’, they consider a continuous bag-of-words model where
context is represented by multiple words for a given target
word. Such a model is not portable to new domains where
the context of words may change. In contrast, in this paper
we consider a convolutional deep belief network (CDBN) to
learn word vectors of n-grams from the input sentences. For
example, in Fig. 1 we can learn the feature ‘dont like’ using
a kernel of width two.

The content posted Online is often sequential. For example,
a long product review is made of many individual sentences.
We use a recurrent neural network (RNN) to remember the

polarity of the previous sentence in a sequence. For an Online
model it may not be suitable to use LSTM that captures long
term dependencies. This is because the model parameters are
changing rapidly. Hence, we feel a vanilla RNN is suitable.

Lastly, in unsupervised deep learning, each layer is trained
independently of the layer below, thus over-fitting is avoided.
For example, in [21] the authors showed that speech recogni-
tion accuracy improves and then saturates at eight hidden lay-
ers. Furthermore, online learning has much lower complexity
as only a single data sample is used to update the model. The
following is a summary of the significance and contributions
of the research work presented in this paper:

• To improve the accuracy of online learning for sentiment
prediction, we extract n-gram features using a CDBN for
training the online classifier.

• To enable learning from unlabeled data we update
weights in the deep model in a semi-supervised manner.

• We propose a prior based on word vectors of bi-grams
with high frequency when updating the online model

Validation of the proposed method is performed on two real-
world benchmarks taken from Twitter and Amazon. The Twit-
ter dataset contains short tweets on Movie reviews classified
as positive and negative [22]. The Amazon dataset consists of
product reviews with multi-class labels such as ‘very positive’,
‘neutral’ and ‘very negative’. The products are from four
categories such as ‘Books’ and ‘DVD’ [23].

The proposed model outperforms the baselines in terms of
accuracy by 5− 20% on both benchmark dataset. The CDBN
has two stages of training. The first stage called pre-training is
completely unsupervised. The unlabelled data samples can be
used in this stage. The second stage called fine-tuning requires
labelled samples. For the purpose of our experiments, we used
the same dataset for both stages. This way, we could compare
with previous authors. However, in practice the pre-training
may be done with any unlabelled dataset.

III. CONVOLUTIONAL DEEP LEARNING

In this section, we begin with a description of the proba-
bilistic sentence sequence model. Next, we describe restricted
Boltzmann machines (RBM). Lastly, we describe how to stack
RBMs in a hierarchical way where the hidden layer of one
RBM serves as the visible layer of the next RBM, resulting
in a deep belief network.
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Fig. 2. State diagram of COAL learning. A sequences of sentences are input to the model. Each word is replaced by a pre-trained vector of length 300. Each
kernel takes the shape of three words with length 300. Convolution results in extracting a feature vector where each neuron represents a significant tri-gram.
These features are used to train an RNN classifier where the label is used to predict the next sentence using a feedback loop. Lastly, the RNN features are
classified using an online SVM.

A. Sentence Model

In tasks where one is concerned with a specific sentence
within the context of the previous discourse, capturing the
order of the sequences preceding the one at hand may be
particularly crucial. We take as given a sequence of sen-
tences s(1), s(2), . . . , s(T ) and the corresponding target labels
y(t) ∈ {P+, P, 0, N,N−} where ‘P+’ is strongly positive,
‘O’ is neutral and ‘N−’ is strongly negative review. Each
sentence in turn is a sequence of words so that s(t) =
(x1(t), x2(t), . . . , xL(t)), where L is the length of sentence
s(t). Thus, the probability of a word p(xi(t)) follows the
distribution:

p(xi(t)) = p(xi(t)|(x1(t), x2(t), (1)
. . . , xi−1(t)), (s(1), s(2), . . . , s(t− 1)))

The word vector of each sentence is randomly initialized to a
vector of d dimension. Next, the word-vector model represents
each word as a d dimensional vector that is computed from co-
occurrence data using Eq( 1). A larger value of d will be more
accurate and computationally slow. When we concatenate the
word vectors of all words in a sentence of length L, it results
in a 2D input vector of dimension L× d. In the next section,
we describe convolutional learning to learn n-gram features
from this transformed 2D input.

B. Convolutional Deep Belief Network

A RBM [24] is a shallow neural model consisting of two
layers (known as visible and hidden layers) organized in a
bipartite graph. To compute the weights W of an RBM, we

assume that the probability distribution over the input vector
x is given as :

p(x|W ) =
1

Z(W )
exp−E(x;W ) (2)

where Z(W ) =
∑

xexp−E(x;W ) is a normalization constant.
Computing the maximum likelihood is difficult as it involves
solving the normalization constant, which is a sum of an
exponential number of terms.

To learn these weights of each RBM layer and maximize the
global energy function efficiently, the approximate maximum
likelihood Contrastive Divergence (CD) [25] approach can be
used which minimizes the difference of two Kullback-Leibler
(KL) divergences given by:

CD = KL(N (µt+1,Σt+1)||N (µ∞,Σ∞))− (3)
KL(N (µt,Σt)||N (µ∞,Σ∞))

where KL(p‖p∞) =
∑

x
p(x)log

p(x)

p(x;W )

where the weights W of n neurons follow a normal Gaussian
distribution with mean vector µ ∈ Rn and covariance matrix
Σ ∈ Rn×n. In practice, this method employs each training
sample as the starting state vector for the visible layer of an
RBM. For subsequent steps, a reconstruction of the visible
layer is produced using the layer weights and the state of
hidden neurons. Now the hidden layer is updated using this
reconstructed visible layer. If this Gibbs is repeated, after a
sufficient number of times, it is possible to converge to the
equilibrium.



Fig. 3. Online Adaptation of Features in a Sentence. Here each the classification boundary is updated using each sentence s(t) at time index t. Next, we
dispose of the features for sentence before updating the model using the next sentence s(t+ 1).

The state ĥj of the hidden neuron j, with bias bj , is a
weighted sum over all continuous visible nodes v and is given
by:

ĥj = bj +
∑
i

viwij , (4)

where wij is the connection weight to hidden neuron j from
visible node vi. The binary state hj of the hidden neuron can
be defined by a sigmoid activation function:

hj =
1

1 + e−ĥj

(5)

Similarly, in the next iteration, the binary state of each visible
node vi is reconstructed.

Lastly, the weights wij are updated as the difference be-
tween the original and reconstructed visible layer labeled as
the vector vrecon, using:

4wij = α(< vihj >data − < vihj >recon) (6)

where α is the learning rate and < vihj > is the expected
frequency with which visible unit i and hidden unit j are active
together when the visible vectors are sampled from the training
set and the hidden units are determined by Eq 4. It is possible
to create a Convolutional RBM (CRBM) naturally extending
a traditional RBM in 2 dimensions using the convolution
operation [26]. If we stack many layers of CRBMs, it is
possible to create to a CDBN, where we simply partition the
hidden layer into Z groups. The energy function of layer l is
now a sum over the energy of individual blocks given by:

El = −
Z∑
z=1

(Lx−nx+1),
(Ly−ny+1)∑

i,j

nx,ny∑
r,s

vi+r−1,j+s−1h
z
ijw

l
rs. (7)

Lastly, after the convolution we do pooling to remove redun-
dant or highly similar features. Fig. 2 illustrates CRBM how
sentences are classified using convolution. Here each sentence
is represented by a vector of length 300. The kernels have
length 300 and width 3 to capture three consecutive words in
a sentence. The CRBM is first pre-trained in an unsupervised
manner followed by fine-tuning using supervised labels.

C. Recurrent Neural Networks

In the last few years, RNN in general received much
attention due to their temporal memory and their ability
in solving sequence problem. The CDBN described in the
previous section will extract bi-grams and tri-grams in a single
sentence. RNN will remember the polarity of the previous
sentence while classifying the current sentence. This is because
a product review is made up of many individual sentences of
different polarity.

The standard RNN output, y(t), at time step t is calculated
using the following equations:

y(t) = f(WR · h(t− 1) +Wl · nh(t)) (8)

where WR is the interconnection matrix among hidden neurons
h, Wl is the weight matrix that connect hidden neurons to the
input nodes nh and f is the activation function. Final output
of the RNN is a compact sentence representation nr, which is
independent of the number of n-grams present in the sentence
itself. Fig. 2 illustrates how the CRBM features are used to
train an RNN. The label for each sentence is used to predict
the next using memory states in the RNN.

TABLE II
TOP BI-GRAMS IN KITCHEN AND ELECTRONICS DOMAIN

Positive Negative

Kitchen

perfect size very disappointed
good quality poorly designed
works great dont buy

cutting board stopped working

Electronics

highly recommended stopped working
good quality main problem

love it tech support
works well doesnt work

IV. CONVOLUTIONAL ONLINE LEARNING

In this section, we introduce the online learning model
for classifying sentences. Next, we describe our proposed
framework for reducing the dimensionality of input to online
learning using deep learning. The resulting model is called
convolutional online adaptation learning (COAL).



A. Online Learning for Sentences

The traditional machine learning model such as support
vector machine (SVM) learns the classification boundary using
all the training samples. Such a model over-fits to the training
data, hence we need to retrain for each domain. Instead online
learning recursively updates the classification boundary using a
single sample each time. This is achieved by using a sampling
approach to update the weights from a Gaussian distribution.

Fig. 3 illustrates the online adaptation of features in a se-
quence of sentences. The classification boundary after training
with sentence s(t) is also shown. The previous sentence in
the sequence at s(t− 1) is discarded after training. The next
sentence s(t + 1) will be used to update the classification
boundary iteratively. For each sentence s(t) in a sequence, a
SVM uses the corresponding target labels y(t) ∈ {+ve,−ve}
to optimize a dual form objective function with both min and
max terms:

max
β

min
α

1

2

T∑
i=1

T∑
j=1

αiαjy(i)y(j)

(
βK(x(i), x(j))

)

−
T∑
i=1

αi, s.t
T∑
i=1

αiy(i) = 0, 0 ≤ αi ≤ C∀i. (9)

where the positive definite Gaussian kernel is denoted by
K(x(i), x(j)) in each modality with a set of different parame-
ters and αi, b and β ≥ 0 are coefficients to be learned simulta-
neously from the training data using quadratic programming.

Next, we consider online learning as a binary classification
task. For the multi-class case, we adopt a one-vs-all strategy.
The learner at time t learns from a sequence of training
instances. A binary online classifier learns from a sequence
of training instances, xt is d dimensional input vector at time
instance t and yt ∈ {−1,+1} is the true class label. Since
online SVM is binary, we use a one-against-all strategy to deal
with multi-class data. The most popular kernel is the Gaussian
distribution for weights. Hence, we have to specify both the
mean and the variance of the distribution.

We assume that the weights follow a normal Gaussian
distribution where kernels are determined as K(x(i), x(j)) ∼
N (µ,Σ) then at each time point we have to update the
parameters as follows:

µt+1 = µt − ηΣt◦(−ytxt) (10)

Σt+1 = Σt −
Σt ◦ xt ◦ xt ◦ Σt

γ + (xt ◦ Σt)
T
xt

where ◦ is the element-wise multiplication operator and γ, η
are positive parameter to avoid over-fitting. Instead of using
the entire dataset x is used to compute the new distribution
N (µt+1,Σt+1), here only a single new sample xt is needed.

B. Online Domain Adaptation

When we update the online model with a single sample
the model will become biased. Since, the context of words in
different domains may be different we consider a prior word
vector a sample from a particular domain and class.

Algorithm 1 COAL Training
1: Initialize : µ1 = 0,Σ1 = I
2: repeat
3: Receive xt
4: if yt ∈ {−1,+1} then
5: Update weighs using Deep Learning Eq(6)
6: Update weights using Online Learning Eq(10)
7: else
8: Update weighs using Deep Learning Eq(6)
9: end if

10: until t6T

The word vectors for the top k bi-grams for each domain
and each class are extracted from the available training data.
Next, we introduce a modified update for the mean in Eq 10
as follows:

µt+1 = µt − ηΣt◦(−ytxt) + x̂ya (11)

where x̂ya is the word vectors for top bi-grams in domain a and
for class label y. For example, the domain can be ‘electronics’
and the class label ‘y’ can be positive or negative review.
Hence, Eq 10 shows the modified online learning update that
uses the word vectors of bi-grams with high frequency as a
prior. Table II illustrates the top bi-grams found in product
reviews for ‘kitchen’ and ‘electronics’ domains. We can see
that for positive and negative reviews slightly different words
are commonly used. For example, ‘electronics’ may need ‘tech
support’ and kitchen items have ‘perfect size’.

For illustration, let us consider domain adaptation from
kitchen to electronics domain. Here, the model is trained with
a stream of product reviews from kitchen domain and tested
on electronics domain. The traditional online SVM updates the
classification boundary with each new sample. This is easily
achieved by updating the mean and variance of the kernel
function. Hence, we introduce a new domain specific prior
during updating. Here, we use the word vectors of the bi-
grams with high frequency in a specific domain and with a
certain polarity. For example, in Table II, we see the bi-gram
’perfect size’ frequently in positive kitchen reviews. This is
not likely to be used in electronics. Similarly, for a negative
review in electronics you will see the bi-gram ’tech support’
very often.

Deep learning can update weights from both labeled and
unlabeled samples. Hence, when receiving xt, deep learning
uses contrastive divergence to update the weights if the label
is unknown and back-propagation to update the weights if
the label is known. Unlike online learning in regular super-
vised online learning, when receiving xt COAL only updates
weights if the label yt is known. Otherwise, the algorithm
ignores the sample and process the next sample.

To generate the final prediction based on the task aware n-
grams embedding feature learned by the CDBN, we stack a
SVM classifier on top of the network . In particular, we adopt
the online SVM proposed in [27].
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As shown in Fig. 2, a minimal CDBN with visible layer of
Lx × d nodes is constructed, where Lx is the max-length of
the sentence and d is the word embedding dimension. Several
hidden convolutional layers are applied. Such hidden layers
filter the n-grams (here, we show bi-gram) generated form
the sentence and are trained to maximize the log-likelihood
of dataset. A hidden logistic layer of nh neurons is used to
flatten the embeddings generated by the convolutional kernels.
These nh features are used to train a RNN that models the
dependencies between multiple sentences in a single product
review. The last layer exploits the online SVM to generate
sentiment aware embedding.

To determine the number of hidden layers in the CDBN,
we compute the change in visible layer reconstruction error
4ε on the training samples. This is the root mean square
error between input training sample and reconstructed sample
at each visible node. If there is a significant change in the
error 4ε, a new hidden layer is added. Following [28], to
determine the optimal number of hidden neurons in a single
layer, we consider the number of components with eigenvalues
above a threshold after during principal component analysis.
Each hidden neuron in the final output layer corresponds to a
particular sentiment class. The contrastive divergence approach
samples features with high frequency into the upper layers,
resulting in the formation of n-grams at hidden neurons in the
first layer, bigger phrases at hidden neurons in second hidden
layer and so on.

Algorithm 1, describes the COAL algorithm. We initialize
the mean and covariance of the online SVM to 0 and I
respectively, where I is the identity matrix. For each new
data sample xt, if the label is known, we use online learning
otherwise we only use deep learning to update the weights in
an unsupervised manner.

V. EXPERIMENTS

In this section, the proposed COAL (available on GitHub1)
was applied to two real sentence classification problems in
order to assess its efficacy. We have used pre-trained word
vectors for English. We use line graphs to show the increase in
accuracy of an online learning model as new samples appear.
The results for other baselines are reported on the entire
training data.

1http://github.com/senticnet/convolutional-online-adaptation-learning

We see that the proposed model first performs inferior to
the baseline, however once sufficient training data is used it
is able to outperform batch learning. Due to limited space we
only provided comparison with the complete COAL model and
the baselines. However, our experiments showed a significant
reduction in accuracy if the prior word vectors are not used
during online learning.

A. Parameter Settings

The experimental settings for SVM and CRBM are same as
the baseline in order to allow comparison with their results. For
example, word vector length is set to 300 and the learning rate
is 0.01. For the RBF kernel parameter C in Eq 9 we notice that
the model convergence is much faster with higher values of C
until saturation. Fig. 4 shows that when we increase C from
0.005 to 0.05, the model needs only 300 samples to converge
compared with 2000 samples. Further increase in C to 0.1 only
marginally improves the convergence to 250 samples. Hence,
we set C to 0.1 for all our experiments.

B. Multi-domain Sentiment Dataset

In this section, we verify the effectiveness of COAL in
classifying subjective sentences using the multi-domain senti-
ment analysis dataset [23]. We first report the results on the
binary problem of classifying reviews as positive (4 or 5) and
negative (1 or 2). Following previous authors we removed
the rating 3 reviews. This allowed us to directly compare
with their results. The four domains consist of ‘Books’ (B),
‘DVD’ (D), ‘Electronics’ (E), and ‘Kitchen’ (K) reviews,
where each domain contains 2000 reviews. Hence, as an
illustration training data in the form of 1000 positive and
1000 negative reviews were taken. Each review was split into
individual sentences resulting in over 10000 sentences for each
domain.

We divided the reviews into train, validation and test sen-
tences in the ratio of 60:20:20. Each review was split into
a sequence of sentences. All sentences in a single review
were assigned the same label corresponding to the star rating
for the review. We discard reviews with rating 3 as they are
ambiguous. We construct 12 cross-domain tasks of sentiment
classification on this dataset. Here, 2000 reviews in one
domain are the training data and 2000 reviews in a different
domain are the test data. Each review is further split into
individual sentences resulting in over 8000 training sentences.

http://github.com/senticnet/convolutional-online-adaptation-learning
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Fig. 5. (a) Accuracy of the 12 binary and multi-class transfer tasks on the multi-domain sentiment dataset (Tasks 1-4) (b) Tasks 5-8. Accuracy for TDN and
PDM is using all 8000 samples.

Fig. 5 (a) and (b) and Fig. 6 (a) show the comparison
for different methods and for different number of training
sentences. We can see that accuracy increases with number of
initial training samples and outperforms baseline transfer deep
network (TDN) [29] in the range of [2-6]% when 8000 training
samples are used. In TDN, the authors considered two parallel
deep auto-encoders to learn transferable features and classi-
fication features. However, they do not use CDBNs, hence
they are unable to capture the context of words. The highest
improvement over baseline is for ‘DVD→Electronics’ (6%)
and the lowest improvement is for ‘Kitchen→Books’(2%). It
is easy to see that the first pair of domains is very similar
and the second pair is very dissimilar. Next, we consider the
multi-class setting COAL-M, where each rating corresponds
to a single class resulting in a 4-class problem.

Fig. 5 (a) and (b) and Fig. 6 (a) show that accuracy of
COAL-M increases with number of training sentences. We
can see that accuracy increases with number of initial training
samples and outperforms baselines Predictive Distribution
Matching (PDM) [30] in the range of [5-20]% when 8000
training samples are used. This is because PDM uses a bag-
of-words model that is unable to capture semantic context
between words. Previous models for sequence of sentences
assume that the data is stationary or the class labels of
sentences are periodically repeating. However, in the real
world this often untrue: class labels in a sequence of sen-
tences changes dramatically with new product reviews. Online
learning updates the parameters using each new sentence and
hence is robust to such non-stationary data. For example, we
see that the accuracy of the model COAL improves from 1000
to 8000 samples. The model learns from the new samples and
is able to adapt the parameters. Even for the case of multi-class
COAL-M the accuracy decreases slightly and improves as it
sees new samples. In contrast, the baselines such as TDM and
PDM assume that the parameters are constant and the accuracy

does not change with increasing training data.

C. Short Text Dataset

Stanford Sentiment Treebank (SST) is a movie review
dataset from Twitter. There is a need to better capture sen-
timent from short comments, such as Twitter data, which
provide less overall signal per document. Here, we analyze
performance on only positive and negative sentences, ignoring
the neutral class. Following [22], the sentences in the treebank
were split into a train (8544), validation (1101) and test splits
(2210). Fig. 6 (b) shows the accuracy of COAL on SST
dataset with increasing number of training samples. We can
see that accuracy increases with number of initial training
samples and outperforms baselines character-to-sentence CNN
(CharSCNN) [26] by over 4% when 8000 training samples
are used. CharSCNN combined character-level and word-level
embedding to predict sentiment in short texts, however this is
unable to capture the non-stationary data in online forums such
as Twitter.

VI. CONCLUSION

To deal with the daily influx of new product reviews, we
considered an online algorithm that learns incrementally from
new reviews without the need for re-training. The features
learned from CDBN are used to train the online classifier
if the label is known. For new reviews without labels, the
unsupervised contrastive-divergence approach is used to up-
date the weights of the deep model. We evaluated our method
on binary and multi-class sentiment prediction on the Twitter
and Amazon dataset. The model is trained on short tweets
or sentences in product reviews. It can be trained in one
domain and used to predict sentiment in another domain. We
could outperform the baseline in the range of 5 − 20%. The
model was also robust to over-fitting compared to traditional
deep learning models. Hence, the accuracy increases with the
number of training samples.



(a) (b)

Fig. 6. (a) Accuracy of the 12 binary and multi-class transfer tasks on the multi-domain sentiment dataset (Tasks 9-12). Accuracy for TDN and PDM is using
all 8000 samples. (b) Accuracy of the binary task on the short text sentiment dataset.
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