Sentic Computing


Sentic computing is a multi-disciplinary approach to natural language processing and understanding at the crossroads between affective computing, information extraction, and commonsense reasoning, which exploits both computer and human sciences to better interpret and process social information on the Web. In sentic computing, whose term derives from the Latin 'sentire' (root of words such as sentiment and sentience) and 'sensus' (as in commonsense), the analysis of natural language is based on linguistics and commonsense reasoning tools, which enable the analysis of text not only at document-, page- or paragraph-level, but also at sentence-, clause-, and concept-level. In particular, sentic computing's novelty gravitates around three key shifts:

1. Shift from mono- to multi-disciplinarity – evidenced by the concomitant use of AI and Semantic Web techniques, for knowledge representation and inference; mathematics, for carrying out tasks such as graph mining and multi-dimensionality reduction; linguistics, for discourse analysis and pragmatics; psychology, for cognitive and affective modeling; sociology, for understanding social network dynamics and social influence; finally ethics, for understanding related issues about the nature of mind and the creation of emotional machines.

2. Shift from syntax to semantics – enabled by the adoption of the bag-of-concepts model in stead of simply counting word co-occurrence frequencies in text. Working at concept-level entails preserving the meaning carried by multi-word expressions such as cloud_computing, which represent ‘semantic atoms’ that should never be broken down into single words. In the bag-of-words model, for example, the concept cloud_computing would be split into computing and cloud, which may wrongly activate concepts related to the weather and, hence, compromise categorization accuracy.

3. Shift from statistics to linguistics – implemented by allowing sentiments to flow from concept to concept based on the dependency relation between clauses. The sentence “iPhone6 is expensive but nice”, for example, is equal to “iPhone6 is nice but expensive” from a bag-of-words perspective. However, the two sentences bear opposite polarity: the former is positive as the user seems to be willing to make the effort to buy the product despite its high price, the latter is negative as the user complains about the price of iPhone6 although he/she likes it.

jumping NLP curves

The core element of sentic computing is SenticNet, a knowledge base of 50,000 commonsense concepts. Unlike many other sentiment analysis resources, SenticNet is not built by manually labelling pieces of knowledge coming from general NLP resources such as WordNet or DBPedia. Instead, it is automatically constructed by applying graph-mining and multi-dimensional scaling techniques on the affective commonsense knowledge collected from three different sources, namely: WordNet-Affect, Open Mind Common Sense and GECKA. This knowledge is represented redundantly at three levels: semantic network, matrix, and vector space. Subsequently, semantics and sentics are calculated though the ensemble application of spreading activation, neural networks and an emotion categorization model. More details about this process are provided in the latest sentic computing book (chapter 2).

SenticNet

SenticNet can be used for different sentiment analysis tasks including polarity detection, which is perfomed by means of sentic patterns. In particular, a semantic parser is firstly used to deconstruct natural language text into concepts. Secondly, linguistic patterns are used in concomitance with SenticNet to infer polarity from sentences. If no match is found in SenticNet or in the linguistic patterns, machine learning is used. More details about this process are provided in the latest sentic computing book (chapter 3).

sentic computing