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Abstract Compared to human intelligence, computers

are far short of common sense knowledge which people

normally acquire during the formative years of their lives.

This paper investigates the effects of employing common

sense knowledge as a new linguistic context in handwritten

Chinese text recognition. Three methods are introduced to

supplement the standard n-gram language model: embed-

ding model, direct model, and an ensemble of these two.

The embedding model uses semantic similarities from

common sense knowledge to make the n-gram probabilities

estimation more reliable, especially for the unseen n-grams

in the training text corpus. The direct model, in turn,

considers the linguistic context of the whole document to

make up for the short context limit of the n-gram model.

The three models are evaluated on a large unconstrained

handwriting database, CASIA-HWDB, and the results

show that the adoption of common sense knowledge yields

improvements in recognition performance, despite the

reduced concept list hereby employed.

Keywords Common sense knowledge �
Natural language processing � Linguistic context �
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Introduction

Common sense knowledge spans a huge portion of human

experience, encompassing knowledge about the spatial,

physical, social, temporal, and psychological aspects of

typical everyday life [1]. Compared to human intelligence,

computers are far short of common sense knowledge,

which people normally acquire during the formative years

of their lives.

In order to make machines smarter, many common

sense knowledge bases, for example, Cyc [2], ConceptNet

[3], SenticNet [4], Freebase [5], and Isanette [6], are

currently being developed and maintained. So far, such

knowledge bases have been exploited for natural language

processing (NLP) tasks, such as information retrieval [7],

sentiment analysis [8], speech recognition [9], multimedia

management [10], predictive text entry [11], and e-health

applications [12]. However, to the best of our knowledge,

there has been no prior study on integrating common

sense knowledge in handwritten Chinese text recognition

(HCTR).

In the near fifty years research of Chinese handwriting

recognition, most works focused on isolated character

recognition [13] and string recognition with very strong

lexical constraints, such as legal amount recognition in

bank checks [14] and address phrase recognition [15]. For

general text recognition (one example of Chinese hand-

written page is shown in Fig. 1), however, first works have

been reported only in recent years [16–18]. Despite such
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works show that linguistic context plays a very important

role in HCTR, very simple language models are usually

employed, even in the post-processing application [19].

The n-gram model, in particular, is the most popular for the

ease of applicability and implementation. Such model,

however, is a mere statistical method that does not exploit

the semantics associated with natural language text [20].

The n-gram model, in fact, does not usually work well

for unseen n-gram sequences in the training text corpus1

and only considers a very short-distance context (for the

moderate model size, n usually takes 2 or 3). Although

many studies have been conducted to overcome these two

limitations [20, 21], both have not been solved yet.

This paper reports our first attempt to exploit common

sense knowledge for HCTR. The key idea is to use the

semantic context and concept similarity provided by Con-

ceptNet, to aid the n-gram model. In particular, we hereby

propose three different approaches. Firstly, we embed the

concept semantic similarity in the n-gram probability

estimation, which is especially useful for those zero and

low-frequency n-gram sequences. Secondly, we use the

common sense knowledge as a direct linguistic context

model to interpolate with the n-gram model (since this

method calculates the similarity between current word and

the whole document, it considers the long-distance con-

text). Lastly, we combine such two methods to an ensemble

model. We tested the proposed methods through several

experiments on the CASIA-HWDB database [22]. Because

we only used a reduced concept list (only 2.8 % of the

normal word list in our system), the common sense

knowledge yields a little improvement in recognition

performance, but does show the potential of correcting

recognition errors.

The rest of this paper is organized as follows: Related

Works section reviews some related works about linguistic

context in HCTR and other NLP tasks; System Overview

section gives an overview of our HCTR system; Common

Sense Knowledge section describes in detail the proposed

approach for integrating common sense knowledge in

HCTR; Experiments section presents experimental setup

and results; Discussion section proposes a discussion on

those results; Conclusion section, finally, draws some

concluding remarks.

Related Works

There are several issues that need to be solved under the

umbrella of HCTR, for example, character over-segmen-

tation, character classification, geometric context, linguistic

context, path evaluation and search, and parameters esti-

mation. In this section, we briefly outline the importance of

linguistic context in HCTR and other NLP tasks as it is the

main issue of this paper. A more detailed state of the art on

HCTR is available in a comprehensive work recently

proposed by Wang et al. [18].

Linguistic context plays a very important role in HCTR,

which can guide the system to choose the most likely

sentence from the full set of candidates. However, early

works on HCTR considered very limited linguistic context.

A preliminary work by Su et al. [16] reported a very low

correct rate of 39.37 % without any linguistic context.

Later, several n-gram language models for linguistic con-

text (e.g., character-level bi-gram, tri-gram, and word-

level2 bi-gram) were investigated in HCTR and improved

the performance largely [17, 23]. To overcome the mis-

match between language model and recognition task,

language model adaptation was investigated in HCTR recently,

resulting in a further improvement in the recognition per-

formance [24].

Although there are no advanced language models used

in HCTR at the present time, language modeling commu-

nities have extended n-gram models in many other NLP

tasks [20, 21]. Most works focused on overcoming the

limitation of short-distance context of n-gram model3.

Skipping models use several distance n-gram models to

approximate the higher order n-gram model [25]. Caching

techniques exploit the fact that, after a word appears, it is

Fig. 1 A page of handwritten Chinese text

1 In the case of unconstrained texts, no corpus is wide enough to

contain all possible n-grams.

2 In Chinese, a word can comprises one or multiple characters, which

can explore both syntactic and semantic meaning better than a

character.
3 High-order n-gram models need much larger training corpus and

higher cost of computation and memory, n usually takes no more than

5 in practice.
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likely to be used again in the near future [26, 27]. Finally,

global context information of the whole document is

exploited in speech recognition using latent semantic

analysis (LSA) [28–30] or probabilistic latent semantic

analysis (pLSA) and latent Dirichlet allocation (LDA)

[31]. All such techniques are still based on word

co-occurrence frequencies and, hence, are very far away

from a deep understanding of natural language.

Recently, many works focus on using common sense

knowledge to enrich the linguistic context in NLP tasks.

Stocky et al. [11] used common sense knowledge to gen-

erate more semantical words in predictive text entry,

Lieberman et al. [9] explored how common sense knowl-

edge can be used to remove the nonsensical hypotheses

outputs in speech recognition, Hsu and Chen [7] investi-

gated the usefulness of common sense knowledge for

image retrieval, and Cambria et al. exploited common

sense knowledge for social media marketing [32] and

affective common sense reasoning [33]. However, there is

no prior work on the use of common sense knowledge for

HCTR. In this paper, we introduce three different methods

for integrating common sense knowledge in HCTR.

System Overview

The baseline handwritten recognition system without

common sense knowledge is introduced in our previous

work [18]. To integrate common sense knowledge effec-

tively, we hereby use a two-pass recognition strategy.

Figure 2 shows the block diagram of our system, where

seven steps are taken in the first pass recognition (only the

last three steps are needed in the second pass recognition),

namely

1. each text line is extracted from the input document

image;

2. the line image is over-segmented into a sequence of

primitive segments (Fig. 3a), and a character may

comprise one segment or multiple segments;

3. several consecutive segments are combined to generate

candidate character patterns (Fig. 3b), wherein some

are valid character patterns, while some are invalid

(also called noncharacter);

4. each candidate pattern is classified into several candi-

date character classes, forming a character candidate

lattice (Fig. 3c);

5. each sequence of candidate characters is matched with

a lexicon to segment into candidate words, forming a

word candidate lattice (Fig. 3d);

6. each word sequence C paired with candidate pattern

sequence X (the pair is called a candidate segmenta-

tion-recognition path) is evaluated by multiple

contexts, and the optimal path is searched to output

the segmentation and recognition result;

7. all text lines results are concatenated to give the document

result, which is used for integrating common sense

knowledge in the second pass recognition or output.

In this work, we evaluate each path in the word candi-

date lattice by integrating character recognition score,

geometric context, and linguistic context [18]:

f ðXs;CÞ ¼
Xm

i¼1

ðdi � lp0
i þ

X4

j¼1

kj � lpj
iÞ þ k5 � log PðCÞ; ð1Þ

where m is the character number of candidate word

sequence C ¼\w1� � �wl [ (l is the word number), di is

the width of the ith character pattern after normalizing by

the estimated height of the text line, lpi
0 is the character

recognition score given by a character classifier followed

by confidence transformation, lpj
i; j ¼ 1; . . .; 4 represents

the geometric context score given by four geometric

models, and log P(C) denotes the linguistic context score

usually given by a language model, which will be intro-

duced in details next. The combining weights kj; j ¼ 1;

. . .; 5 are optimized by Maximum Character Accuracy

training [18].

Fig. 2 System diagram for HCTR
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Under this path evaluation function, we use a refined beam

search method [18] to find the optimal path. The search

proceeds in frame-synchronous fashion with two steps

pruning: first, we only retain the best partial path at each

candidate character and then retain the top beam-width

partial paths from all the retained paths after the first pruning

step ended at each segmented point (many candidate char-

acters with the best partial paths in the first pruning step end

at the same segmented point due to the over-segmentation

and character classification, see Fig. 3b, c).

Since words can explore the semantic meaning associ-

ated with text better than characters in Chinese, common

sense knowledge is usually organized as word level. In this

work, we only consider two word-level bi-gram language

models from our previous work [18] as the baseline lan-

guage models and then modify them using the common

sense knowledge introduced in next section. The two

baseline bi-grams are word bi-gram (wbi) and interpolating

word and class bi-gram (iwc):

log PwbiðCÞ ¼
Xl

i¼1

log pðwijwi�1Þ; ð2Þ

log PiwcðCÞ ¼ log PwbiðCÞ þ k6 � log PwcbðCÞ; ð3Þ

where log Pwcb(C) is the word class bi-gram (wcb)

log PwcbðCÞ ¼
Xl

i¼1

log pðwijWiÞpðWijWi�1Þ; ð4Þ

and the term Wi is the class of word wi using the word

clustering algorithm in [34].

Common Sense Knowledge

Common sense knowledge represents human general

knowledge acquired from the world and can aid machines

to better interpret natural language and select relevant

results that make sense in context, rather than simply

basing the analysis on word co-occurrence frequencies in

the standard n-gram language model. Moreover, because of

the data sparsity (according to the Zipf’s law [35]), the

maximum likelihood estimation (MLE) of n-gram proba-

bility is usually improper, especially for those unseen

n-grams in the corpus of training texts (no corpus can

contain all possible n-grams). Finally, the number of

parameters in high-order model (large n) is intractable. In

practice, bi-gram (n = 2) is usually used, which considers

very short-distance context (only one history word).

In this section, we first give a brief introduction of

ConceptNet, which is used as a common sense knowledge

base in this work; next, we describe how we embed com-

mon sense knowledge in the n-gram model to make the

probability estimation more reliable; then, we introduce the

common sense knowledge as a direct model to interpolate

with n-grams for the long linguistic context; finally, we

explore the combination of such two models.

ConceptNet

In this work, we select ConceptNet [1, 3] as common sense

knowledge. ConceptNet is collected from the Open Mind

Common Sense (OMCS) project since 2000 by asking

volunteers on the Internet to enter common sense knowl-

edge into the system.

It is a semantic network of concepts connected by

relations such as ’IsA,’ ’HasProperty,’ or ’UsedFor,’ which

provide a connection between natural language text and an

Fig. 3 a Over-segmentation; b Segmentation candidate lattice;

c Character candidate lattice of a segmentation (thick path) in (b);

d Word candidate lattice of (c)
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understanding of the world [36], and has been widely used

in many NLP tasks [9, 11, 12]. Figure 4 shows an example

of a small section of ConceptNet.

To identify the similarities between concepts in Con-

ceptNet, the AnalogySpace [37] process is employed by

applying truncated singular value decomposition (SVD) on

the matrix representation of the common sense knowledge

base, whose rows are concepts, and columns are the fea-

tures as the relationships with other concepts. In the Ana-

logySpace, each concept is represented as a vector, which

can be used for further analysis, for example, get the

similarity between two concepts.

Embedding Model

To overcome the problem of MLE for unseen n-grams

(zero probability), smoothing techniques [38] are usually

used, such as Katz back-off smoothing [39]:

pnðw2jw1Þ ¼
pmlðw2jw1Þ if Cðw1;w2Þ[ 0

aðw1Þ � pnðw2Þ if Cðw1;w2Þ ¼ 0

�
; ð5Þ

where C(.) denotes the n-gram counts in the training corpus,

pml(.) is the direct MLE probability, and a(w1) is the scaling

factor to make sure the smoothed probabilities normalized to

one. Although such smoothing can avoid the zero probability

problem, it is still based on the MLE of the n-gram itself

without considering the relationship between similar words.

Based on the fact that the similar words are usually with

similar n-gram properties (e.g., the similar linguistic con-

text), it is very likely that some words are observed in some

n-grams in the training text corpus, while their similar

words are unseen because of the limited corpus size. Uti-

lizing such similarity, we can get more reliable probability

estimation for these unseen n-grams by embedding the

word similarity with normal n-gram probability as follows:

peðw2jw1Þ ¼
XK

k¼1

pnðw2jw1
kÞpsðw1

k jw1Þ; ð6Þ

where the number K denotes the size of similar word set

used in our system. We only consider the top K similar

words while viewing the similarities of the remaining

words as zero, in order to reduce the computation cost due

to the large size of Chinese word lexicon (usually more

than 0.1 million). The word wk
1 represents the kth similar

word of w1, pn(w2|wk
1) is the normal bi-gram probability by

(5), and ps(wk
1|w1) is the word similarity probability using

the common sense knowledge.

Each word in the common sense knowledge database

can be represented as a semantic vector using truncated

SVD on the common knowledge matrix, as in the Ana-

logySpace process [37]. With such semantic vectors, we

can calculate the word similarity via the cosine function:

simðw1;w
1
kÞ ¼ cosðx1; x

1
kÞ ¼

x1
T � x1

k

kx1k � kx1
kk
; ð7Þ

where x represents a semantic vector, and kxk denotes the

Euclidean norm of the vector. This cosine similarity is

widely used in LSA language models [28–30] and other

NLP tasks [35].

To get the similarity probability formation in (6), we

normalize cosine similarity (7) by all words in the similar

word set of word w1 according to the method in [28]. First,

we get the smallest similarity of word w1:

MinSimðw1Þ ¼ min
K

k¼1
simðw1;w

1
kÞ: ð8Þ

Next, subtracting out the MinSim(w1) from all cosine

similarities of word w1 to assure all similarities larger than

zero, then normalizing to get a first probability:

p
0

sðw1
k jw1Þ ¼

simðw1;w
1
kÞ �MinSimðw1ÞPK

i¼1 simðw1;w
1
i Þ �MinSimðw1Þ½ �

: ð9Þ

Finally, the similarity probability is estimated by a power

transformation of the above probability and renormalizing:

psðw1
k jw1Þ ¼

p
0
sðw1

k jw1ÞcPK
i¼1 p0sðw1

i jw1Þc
; ð10Þ

Fig. 4 A small section of

ConceptNet [37]
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where the power constant c is set empirically on a data set

of validation samples. In the experiments, we can see that

the recognition performance is improved by introducing c.

Finally, it is easy to extent our embedding probability

estimation (6) to high-order n-gram model by replacing the

normal bi-gram probability pn(w2|wk
1). In this work, we call

such approach embedding model since it embeds the

common sense knowledge in normal probability estimation

of n-gram model.

Direct Model

To make up for the short-distance context limit of the

n-gram model (only n - 1 history words are considered as

linguistic context), we calculate the semantic similarity

between each word and its all history words using common

sense knowledge. A similar approach is commonly adopted

in speech recognition, except that LSA is used for semantic

similarity [28–30].

In this work, we call this long-distance semantic lin-

guistic context as semantic language model Ps(C), which

can be calculated as follows:

log PsðCÞ ¼
Xl

i¼1

log psðwijhiÞ; ð11Þ

where l is the number of words in word sequence C, and

hi ¼ wi�1
1 ¼\w1 � � �wi�1 [ (i [ 1) is referred as the

history of the word wi (h1 = null, and ps(w1|h1) = 1 is

assumed). The semantic probability ps(wi|hi) can be further

decomposed into the product of word-dependent terms:

log psðwijhiÞ ¼
1

i� 1

Xi�1

j¼1

f ðwi;wjÞ; ð12Þ

where 1
i�1

is a normalization factor to overcome the effect

of sequence length of hi (i [ 1), and f(wi, wj) is the

logarithm of semantic similarity probability of each two

words:

f ðwi;wjÞ ¼ log
1þ cosðxi; xjÞ

2
; ð13Þ

where xi and xj are the semantic vector of word wi and

wj, respectively, and the cosine function is defined as (7).

In the above, the semantic language model Ps(C) only

considers the history words as the linguistic context hi in

(11). Sometimes, the current word wi is also influenced by

its subsequent words. To consider the whole linguistic

context of the document, we use two-pass recognition

strategy [24]. In the first pass, we use the baseline system

without the semantic language model to get a first recog-

nition result and then use this result to get the semantic

language model Ps(C) used in the second pass recognition:

log PsðCÞ ¼
Xl

i¼1

log psðwijdocÞ; ð14Þ

where doc is the first pass recognition result, and the

logarithm of whole semantic probability log ps(wi|doc) is

calculated similarly as (12):

log psðwijdocÞ ¼ 1

d

Xd

j¼1

f ðwi;wjÞ; ð15Þ

where d is the number of words in the first result doc.

Compared to (11), the whole document semantic language

model (14) also considers the linguistic context of sub-

sequent words, although there are some error words in the

first pass recognition.

No matter the semantic language model considering

only history (11) or whole document (14), the semantic

linguistic context is usually not enough to predict the next

word. We combine it with normal n-gram model as follows

[28]:

log PðCÞ ¼ log PnðCÞ þ k7 � log PsðCÞ; ð16Þ

where Pn(C) is a normal n-gram model (e.g., word bi-gram

(2) or interpolating word and class bi-gram (3)), and

Ps(C) is the semantic language model by (11) or (14). The

logarithm is used for more general purposes in path eval-

uation function (1), and the weight k7 is used to balance

such two models, which is optimized together with other

combining weights in (1) by Maximum Character Accu-

racy training [18].

We call this approach direct model of integrating com-

mon sense knowledge, since we use the common sense

knowledge directly as semantic language model Ps(C) in

(16).

Moreover, we can get an ensemble model by combining

direct model (16) and embedding model (6). Obviously, the

normal n-gram model Pn(C) in (16) can be computed by

the embedding n-gram probability pe(w2|w1) of (6) instead

of the normal n-gram probability pn(w2|w1), and then the

ensemble model can be formulated by

log PðCÞ ¼ log PeðCÞ þ k7 � log PsðCÞ; ð17Þ

where Pe(C) and Ps(C) are estimated by the embedding

model and direct model, respectively.

Experiments

We use the system introduced detailedly in [18] as the

baseline (except candidate character augmentation and

using language model compression [24]) to evaluate the

effect of common sense knowledge in HCTR, and all the

experiments are implemented on a desktop computer of
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2.66 GHz CPU, programming using Microsoft Visual

C??.

Database and Experimental Setting

We evaluate the performance on a large database CASIA-

HWDB [22], which is divided into a training set of 816

writers and a test set of other 204 writers. The training set

contains 3,118,477 isolated character samples of 7,356

classes and 4,076 pages of handwritten texts (including

1,080,017 character samples). We tested on the uncon-

strained texts including 1,015 pages, which were segmented

into 10,449 text lines and there are 268,629 characters.

The character classifier used in our system is a modified

quadratic discriminant function (MQDF) [40], and the

parameters were learned from 4/5 samples of training set,

and the remaining 1/5 samples were for confidence param-

eter estimation. For parameter estimation of the geometric

models, we extracted geometric features from 41,781 text

lines of training text pages. The normal word-level bi-grams

were trained on a large corpus (containing about 32 million

words and the size of word lexicon is about 0.28 million)

from the Chinese Linguistic Data Consortium (CLDC).

We extracted 14,199 English concepts from ConceptNet,

which are translated into Chinese using machine translation

techniques, and only the concepts in the normal word lexicon

from CLDC corpus are retained. A very small number of

concepts are used in our experiments, that is, 7,844 concepts

(only 2.8 % of the word lexicon). On obtaining the context

models, the combining weights in path evaluation function

(1) were learned on 300 pages of training text. In addition,

another 200 pages of training text are used as validation

samples to set the size (K) of similar word set in (6) and the

power constant (c) in (10) by trail and error.

We evaluate the recognition performance using two

character-level accuracy metrics as in the baseline system

[18]: correct rate (CR) and accurate rate (AR):

CR ¼ ðNt � De � SeÞ=Nt;

AR ¼ ðNt � De � Se � IeÞ=Nt;
ð18Þ

where Nt is the total number of characters in the transcript.

The numbers of substitution errors (Se), deletion errors

(De), and insertion errors (Ie) are calculated by the aligning

the recognition result string with the transcript by dynamic

programming. It is suggested that the AR is an appropriate

measure for document transcription, while CR is a good

metric for tasks of content modeling.

Experimental Results

We evaluate the effect of the common sense knowledge as

embedding model, direct model, and combination model.

In the embedding model, the size of similar word set is set

to 10 (this is, K = 10 in (6), it is chosen by trial and error

on our validation data set). We also give the processing

time on all test pages (1,015 pages) excluding that of over-

segmentation and character recognition, which are stored in

advance.

First, we evaluated the effect of power transformation in

embedding model of integrating common sense knowledge

in HCTR (power constant c = 7 is chosen by trial and error

on the validation data set), and the results of two word-

level bi-grams (wbi and iwc) are shown in Table 1. Com-

pared to the embedding model without power transforma-

tion [i.e., c = 1 in (10)], we can see that the performance of

both CR and AR is improved after power transformation,

especially in the word bi-gram model. The benefit of power

transformation is attributed to the fact that it enlarges the

difference of the similarity probabilities in the similar word

set of w1 and helps those with higher similarity. We hence

used the power transformation in the experiments of the

ensemble model next.

Table 2 shows the results of integrating common sense

knowledge using direct model with the context of both

history and whole document. Comparing such two direct

Table 1 Effects of power transformation in embedding model

wbi iwc

Models CR (%) AR (%) CR (%) AR (%)

No power 90.88 90.23 91.19 90.57

Power 91.00 90.35 91.22 90.58

Table 2 Results of direct model with the context of history and

whole document

wbi iwc

Models CR

(%)

AR

(%)

Time

(h)

CR

(%)

AR

(%)

Time

(h)

History 90.99 90.34 1.03 91.22 90.58 1.18

Document 91.00 90.35 2.58 91.23 90.60 2.88

Table 3 Results of common sense knowledge in HCTR

wbi iwc

Models CR

(%)

AR

(%)

Time

(h)

CR

(%)

AR

(%)

Time

(h)

Baseline 90.98 90.33 0.81 91.21 90.57 0.96

Embedding 91.00 90.35 1.04 91.22 90.58 1.18

Direct 91.00 90.35 2.58 91.23 90.60 2.88

Ensemble 91.00 90.35 2.59 91.23 90.59 2.89
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models, we can see the performance of model with whole

document context is a little higher, because the span of

linguistic context is much larger than the history words,

although there are some errors in the first pass recognition

result. On the other hand, computational time is higher

because of two-pass recognition and more calculations of

words’ semantic similarities in (15).

Finally, we investigate the effect of integrating common

sense knowledge in HCTR by three models (embedding,

direct, and the ensemble model). In this experiment, the

power transformation is used in the embedding model, and

the direct model is with the context of whole document

from the first pass recognition. All the results are shown in

Table 3. Compared to the baseline system without any

common sense knowledge, both embedding and direct

model, either with wbi or iwc, improve the performances of

both CR and AR, and the direct model is a little better; this

justifies the importance of long-distance linguistic context,

while the ensemble model does not improve the perfor-

mance further. On the other hand, the processing time is

much more in the direct and ensemble model.

Figure 5 shows three recognition examples using direct

model of common sense knowledge. We can see that the

common sense knowledge does benefit the HCTR system.

Three errors (Fig. 5b) made by baseline system without

common sense knowledge. Obviously, these errors are

nonsensical according to the common sense knowledge,

and all are corrected by the direct model (Fig. 5c).

Discussion

Our experimental results demonstrate that the proposed

approach of integrating common sense knowledge

improves handwriting text recognition performance. Such

an improvement, however, is not substantial as the list of

common sense knowledge concepts adopted in our exper-

iments is very small: most of the candidate words (about

92 %) in the lattice, in fact, are not contained in the con-

cept list.

For the embedding model, the probabilities of such

unseen words are computed back to the normal bi-gram

(i.e., pe(w2|w1) = pn(w2|w1) for the word w1 out of the

concept list), and the semantic similarity probabilities in

the direct model are set to an empirical value (this is,

f(wi,wj) = log 0.5) for the unseen words either wi or wj. In

addition, there are a few errors in the machine translation

from English concepts to Chinese. Finally, only the valid

words in the concept list contribute to improve the per-

formance (only 41 % words of ground truth text are con-

tained in this concept list at the present time). To get good

performances, the concept list needs to be replenished and

improved further. In addition, our approach can be also

used in other context, such as speech recognition or

handwriting recognition of other language text.

Conclusion

This paper presented a novel approach to handwritten

Chinese text recognition based on three common sense

knowledge-based methods: the embedding model, the

direct model, and the ensemble model. The embedding

model uses the semantic similarity to make the n-gram

probabilities estimation more reliable, especially for those

unseen n-grams in the training text corpus. The direct

model considers the linguistic context of the whole docu-

ment to make up for the short-distance context limit of

normal n-gram language model. The ensemble model is the

combination of such two models. Experimental results

showed that common sense knowledge yields improvement

in recognition performance by selecting the results that

make sense in context, despite the reduced concept list

hereby employed. In the future, we plan to expand the

Chinese common sense knowledge employed and to

develop novel techniques for concept matching.
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