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Abstract

The way people express their opinions has radically changed in the past few years thanks to the
advent of online collaborative media. The distillation of knowledge from this huge amount of
unstructured information can be a key factor for marketers who want to create an identity
for their product or brand in the minds of their customers. These online social data, however,
remain hardly accessible to computers, as they are specifically meant for human consumption.
Existing approaches to opinion mining, in fact, are still far from being able to infer the cognitive
and affective information associated with natural language as they mainly rely on knowledge
bases that are too limited to efficiently process text at concept-level. In this context, standard
clustering techniques have been previously employed on an affective common-sense knowledge
base in attempt to discover how different natural language concepts are semantically and
affectively related to each other and, hence, to accordingly mine on-line opinions. In this work,
a novel cognitive model based on the combined use of multi-dimensional scaling and artificial
neural networks is exploited for better modelling the way multi-word expressions are organised
in a brain-like universe of natural language concepts. The integration of a biologically inspired
paradigm with standard principal component analysis helps to better grasp the non-linearities
of the resulting vector space and, hence, improve the affective common-sense reasoning capa-
bilities of the system.
ª 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Emotions are intrinsically part of our mental activity and play
a key role in decision-making and cognitive communication
.
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processes. They are special states of themind, shaped by nat-
ural selection, for adjusting various aspects of human organ-
ism in away that it can better face particular situations, e.g.,
anger evolved for reaction, fear evolved for protection, and
affection evolved for reproduction. Therefore, emotions
cannot be shelved in the development of intelligent systems:
in order for amachine to be really intelligent, it has to possess
the ability to recognise, understand, and express emotions.
To this end, a great number of emotion categorisationmodels
and emotion-sensitive systems has been developed in recent
years for performing tasks such as affect recognition and
polarity detection.

In the context of sentic computing1 (Cambria and Hussain,
2012), in particular, graph mining techniques and multi-
dimensionality reduction techniques (Cambria et al., 2012)
have been employed on a knowledge base obtained by blend-
ing ConceptNet (Speer and Havasi, 2012), a directed graph
representation of common-sense knowledge, with Word-
Net-Affect (WNA) (Strapparava and Valitutti, 2004), a linguis-
tic resource for the lexical representation of affect. In this
work, a novel cognitive model based on the combined use
of principal component analysis (PCA) and artificial neural
networks (ANNs) is exploited on the same knowledge base
to further improve thewaymulti-word expressions are organ-
ised in a brain-like universe of natural language concepts. Re-
sults demonstrate noticeable enhancements in emotion
recognition from natural language text with respect to previ-
ously adopted strategies and pave theway for future develop-
ment of more biologically inspired approaches to the
emulation of affective common-sense reasoning.

The restof this paper isorganisedas follows: thenext section
introduces related works in the field of opinion mining; the fol-
lowing one illustrates how the affective common-sense knowl-
edge base is constructed; next, a section describes the multi-
dimensional scaling techniques adopted to perform reasoning
on such a knowledge base; the following section presents the
emotion categorisation model used for clustering affective
knowledge; then, a sectiondescribes indetail theproposedcog-
nitive architecture and how this can be exploited for brain-in-
spired opinion mining; finally, the last section offers some
concluding remarks and future work recommendations.

2. Related work

Existing approaches to opinion mining can be grouped into
three main categories, with few exceptions: keyword spot-
ting, lexical affinity, and statistical methods. Keyword spot-
ting is the most naı̈ve approach and probably also the most
popular because of its accessibility and economy. Text is
classified into affect categories based on the presence of
fairly unambiguous affect words like ‘happy’, ‘sad’,
‘afraid’, and ‘bored’. Elliott’s Affective Reasoner (Elliott,
1992), for example, watches for 198 affect keywords,
e.g., ‘distressed’ and ‘enraged’, plus affect intensity modi-
fiers, e.g., ‘extremely’, ‘somewhat’, and ‘mildly’, plus a
handful of cue phrases, e.g., ‘did that’ and ‘wanted to’.
Other popular sources of affect words are Ortony’s Affec-
tive Lexicon (Ortony et al., 1988), which groups terms into
affective categories, and Wiebe’s linguistic annotation
1 http://sentic.net/sentics.
scheme (Wiebe et al., 2005). The weaknesses of this ap-
proach lie in two areas: poor recognition of affect when
negation is involved and reliance on surface features. About
its first weakness, while the approach can correctly classify
the sentence ‘‘today was a happy day’’ as being happy, it is
likely to fail on a sentence like ‘‘today wasn’t a happy day
at all’’. About its second weakness, the approach relies on
the presence of obvious affect words which are only surface
features of the prose. In practice, a lot of sentences convey
affect through underlying meaning rather than affect adjec-
tives. For example, the text ‘‘My husband just filed for di-
vorce and he wants to take custody of my children away
from me’’ certainly evokes strong emotions, but uses no af-
fect keywords, and therefore, cannot be classified using a
keyword spotting approach.

Lexical affinity is slightly more sophisticated than key-
word spotting as, rather than simply detecting obvious af-
fect words; it assigns arbitrary words a probabilistic
‘affinity’ for a particular emotion. For example, ‘accident’
might be assigned a 75% probability of being indicating a
negative affect, as in ‘car accident’ or ‘hurt by accident’.
These probabilities are usually trained from linguistic cor-
pora (Rao and Ravichandran, 2009; Somasundaran et al.,
2008; Stevenson et al., 2007; Wilson et al., 2005). Though
often outperforming pure keyword spotting, there are two
main problems with the approach. First, lexical affinity,
operating solely on the word-level, can easily be tricked
by sentences like ‘‘I avoided an accident’’ (negation) and
‘‘I met my girlfriend by accident’’ (other word senses). Sec-
ond, lexical affinity probabilities are often biased toward
text of a particular genre, dictated by the source of the lin-
guistic corpora. This makes it difficult to develop a reus-
able, domain-independent model.

Statistical methods, such as latent semantic analysis
(LSA) and support vector machine (SVM), have been popular
for affect classification of texts and have been used by
researchers on projects such as Goertzel’s Webmind (Goert-
zel et al., 2000), Pang’s movie review classifier (Pang et al.,
2002), and many others (Abbasi et al., 2008; Hu and Liu,
2004; Pang and Lee, 2005; Turney and Littman, 2003; Veli-
kovich et al., 2010). By feeding a machine learning algo-
rithm a large training corpus of affectively annotated
texts, it is possible for the systems to not only learn the
affective valence of affect keywords as in the keyword spot-
ting approach, but such a system can also take into account
the valence of other arbitrary keywords (like lexical affin-
ity), punctuation, and word co-occurrence frequencies.
However, statistical methods are generally semantically
weak, meaning that, with the exception of obvious affect
keywords, other lexical or co-occurrence elements in a sta-
tistical model have little predictive value individually. As a
result, statistical text classifiers only work with acceptable
accuracy when given a sufficiently large text input. So,
while these methods may be able to affectively classify
user’s text on the page- or paragraph-level, they do not
work well on smaller text units such as sentences.

The proposed alternative approach aims to focus on emu-
lating the human reasoning process. The motivation is to en-
able machines to represent knowledge and perform
reasoning inmanydifferentways so that,whenever they reach
adeadend, theycan switch amongdifferentpoints of viewand
find one that may work. To bridge the cognitive and affective
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gap between ‘word-level’ natural language data and the
‘concept-level’ opinions and sentiments conveyed by them,
intelligent cognitive systems able to learn new affective
common-sense knowledge and perform reasoning on it are
needed.
3. Building the affective common-sense
knowledge base

The affective common-sense knowledge base developed
within this research work is built upon ConceptNet, the
graph representation of the Open Mind corpus, which struc-
turally similar to WordNet (Fellbaum, 1998), but whose
scope of contents is general world knowledge, in the same
vein as Cyc (Lenat and Guha, 1989). Instead of insisting on
formalising common-sense reasoning using mathematical lo-
gic (Mueller, 2006), ConceptNet uses a new approach: it
represents data in the form of a semantic network and
makes it available to be used in natural language processing
(NLP). The prerogative of ConceptNet, in fact, is contextual
common-sense reasoning: while WordNet is optimised for
lexical categorisation and word-similarity determination,
and Cyc is optimised for formalised logical reasoning, Con-
ceptNet is optimised for making practical context-based
inferences over real-world texts.

In ConceptNet, WordNet’s notion of node in the semantic
network is extended from purely lexical items (words and
simple phrases with atomic meaning) to include higher-or-
der compound concepts, e.g., ‘satisfy hunger’ and ‘follow
recipe’, to represent knowledge around a greater range of
concepts found in everyday life. Moreover WordNet’s reper-
toire of semantic relations is extended from the triplet of
synonym, IsA and PartOf, to a repertoire of twenty semantic
relations including, for example, EffectOf (causality), Sub-
eventOf (event hierarchy), CapableOf (agent’s ability),
MotivationOf (affect), PropertyOf, and LocationOf. Con-
ceptNet’s knowledge is also of a more informal, defeasible,
and practically valued nature.

For example, WordNet has formal taxonomic knowledge
that ‘dog’ is a ‘canine’, which is a ‘carnivore’, which is a ‘pla-
cental mammal’; but it cannot make the practically oriented
member-to-set association that ‘dog’ is a ‘pet’. Concept-
Net also contains a lot of knowledge that is defeasible, i.e., it
describes something that is often true but not always, e.g.,
EffectOf(‘fall off bicycle’, ‘get hurt’), which is something that
cannot be left aside in common-sense reasoning. Most of the
facts interrelating ConceptNet’s semantic network are dedi-
cated tomaking rather generic connections between concepts.

This type of knowledge can be brought back to Minsky’s
K-lines, as it increases the connectivity of the semantic net-
work and makes it more likely that concepts parsed out of a
text document can be mapped into ConceptNet. Concept-
Net is produced by an automatic process, which first applies
a set of extraction rules to the semi-structured English sen-
tences of the OMCS corpus, and then applies an additional
set of ‘relaxation’ procedures, i.e., filling in and smoothing
over network gaps, to optimise the connectivity of the
semantic network. The last version of ConceptNet
(ConceptNet 5) contains knowledge from English Wikipedia,
specifically from DBPedia, which extracts knowledge from
the info-boxes that appear on articles, and ReVerb, a
machine-reading project extracting relational knowledge
from the actual text of each article. It also includes a large
amount of content from the English Wiktionary, including
synonyms, antonyms, translations of concepts into hundreds
of languages, and multiple labelled word senses for many
English words. ConceptNet 5 contains more dictionary-style
knowledge coming from WordNet and some knowledge
about people’s intuitive word associations coming from
games with a purpose (GWAP).

In Chinese culture (and many others), the concepts of
‘heart’ and ‘mind’ used to be expressed by the same word
(‘xin’) as it was believed that consciousness and thoughts
came from the cardiac muscle. In human cognition, in fact,
thinking and feeling are mutually present: emotions are of-
ten the product of our thoughts, as well as our reflections
are often the product of our affective states. Emotions
are intrinsically part of our mental activity and play a key
role in communication and decision-making processes. Emo-
tion is a chain of events made up of feedback loops. Feelings
and behaviour can affect cognition, just as cognition can
influence feeling. Emotion, cognition, and action interact
in feedback loops and emotion can be viewed in a structural
model tied to adaptation (Plutchik, 2001). There is actually
no fundamental opposition between emotion and reason. In
fact, it may be argued that reason consists of basing choices
on the perspectives of emotions at some later time. Reason
dictates not giving in to one’s impulses because doing so
may cause greater suffering later (Frijda, 1988).

Reason does not necessarily imply exertion of the volun-
tary capacities to suppress emotion. It does not necessarily
involve depriving certain aspects of reality of their emotive
powers. On the contrary, our voluntary capacities allow us
to draw more of reality into the sphere of emotion. They al-
low one’s emotions to be elicited not merely by the proxi-
mal, or the perceptual, or that which directly interferes
with one’s actions, but by that which, in fact, touches on
one’s concerns, whether proximal or distal, whether occur-
ring now or in the future, whether interfering with one’s
own life or that of others. Cognitive functions serve emo-
tions and biological needs. Information from the environ-
ment is evaluated in terms of its ability to satisfy or
frustrate needs. What is particularly significant is that each
new cognitive experience that is biologically important is
connected with an emotional reaction such as fear, plea-
sure, pain, disgust, or depression (Neisser, 1967). Emotions,
in fact, are special states shaped by natural selection to ad-
just various aspects of our organism in order to make it bet-
ter face particular situations, e.g., anger evolved for
reaction, fear evolved for protection, and affection evolved
for reproduction. For these reasons, the development of
intelligent systems cannot prescind from emotions: if we
want computers to be really intelligent, not just have the
veneer of intelligence, we need to give them the ability to
recognise, understand, and express emotions. To this end,
it is useful to build a knowledge base that contains not only
common-sense concepts, but also the affective information
associated with these. ConceptNet is a good source of com-
mon-sense knowledge but alone is not enough for sentiment
analysis tasks as it specifies how concepts are semantically
related to each other but often lacks connections between
concepts that convey the same kind of emotion or similar
polarity.
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To overcome such a hurdle, WNA, a linguistic resource
for the lexical representation of affective knowledge devel-
oped starting from WordNet, is used. WNA is built by assign-
ing to a number of WordNet synsets one or more affective
labels (a-labels). In particular, the affective concepts repre-
senting emotional states are identified by synsets marked
with the a-label ‘emotion’, but there are also other a-labels
for concepts representing moods, situations eliciting emo-
tions, or emotional responses. WNA was developed in two
stages. The first consisted of the identification of a first core
of affective synsets. The second step consisted of the
extension of the core with the relations defined in WordNet.
ConceptNet and WNA are blended together by combining
the matrix representations of the two knowledge bases lin-
early into a single matrix, in which the information between
the two initial sources is shared. The first step to create the
affective blend is to transform the input data so that it can
all be represented in the same matrix. To do this, the lem-
ma forms of ConceptNet concepts are aligned with the lem-
ma forms of the words in WNA and the most common
relations in the affective knowledge base are mapped into
ConceptNet’s set of relations, e.g., Hypernym into IsA and
Holonym into PartOf. In particular, ConceptNet is first con-
verted into a matrix by dividing each assertion into two
parts: a concept and a feature, where a feature is simply
the assertion with the first or the second concept left
unspecified such as ‘a wheel is part of’ or ‘is a kind of
liquid’.

The entries in the resulting matrix are positive or nega-
tive numbers, depending on the reliability of the asser-
tions, and their magnitude increases logarithmically with
the confidence score. WNA, similarly, is represented as a
matrix where rows are affective concepts and columns
are features related to these. The result of aligning the
matrix representations of ConceptNet and WNA is a new
affective semantic network, in which common-sense con-
cepts are linked to a hierarchy of affective domain labels.
In such a semantic network, termed AffectNet (http://sen-
tic.net/affectnet.zip) (Cambria and Hussain, 2012), com-
mon-sense and affective knowledge are in fact
combined, not just concomitant, i.e., everyday life con-
cepts like ‘have breakfast’, ‘meet people’, or ‘watch tv’
are linked to affective domain labels like ‘joy’, ‘anger’,
or ‘surprise’. Such knowledge base results very useful
when performing tasks such as emotion recognition or
polarity detection from natural language text, as opinions
and sentiments are often conveyed implicitly through con-
text and domain dependent concepts, rather than through
specific affect words.

4. Multi-dimensional scaling for affect
recognition

The best way to solve a problem is to already know a solu-
tion for it. But, if we have to face a problem we have never
met before, we need to use our intuition. Intuition can be
explained as the process of making analogies between the
current problem and the ones solved in the past to find a
suitable solution. Marvin Minsky attributes this property to
the so called ‘difference-engines’ (Minsky, 1986). This par-
ticular kind of agents operates by recognising differences
between the current state and the desired state, and acting
to reduce each difference by invoking K-lines that turn on
suitable solution methods. This kind of thinking is maybe
the essence of our supreme intelligence since in everyday
life no two situations are ever the same and have to perform
this action continuously. To emulate such a process, Affec-
tiveSpace (Cambria and Hussain, 2012), a novel affective
common-sense knowledge visualisation and analysis sys-
tem,2 is used.

Human mind constructs intelligible meanings by continu-
ously compressing over vital relations (Fauconnier and Turn-
er, 2003). The compression principles aim to transform
diffuse and distended conceptual structures to more fo-
cused versions so as to become more congenial for human
understanding. To this end, principal component analysis
(PCA) has been applied on the matrix representation of
AffectNet. In particular, truncated singular value decompo-
sition (TSVD) has been preferred to other dimensionality
reduction techniques for its simplicity, relatively low com-
putational cost, and compactness. TSVD, in fact, is particu-
larly suitable for measuring the cross-correlations between
affective common-sense concepts as it uses an orthogonal
transformation to convert the set of possibly correlated
common-sense features associated with each concept into
a set of values of uncorrelated variables (the principal com-
ponents of the SVD). By using Lanczos’ method (Lanczos,
1950), moreover, the generalisation process is relatively
fast (a few seconds), despite the size and the sparseness
of AffectNet. As the dimensions of such a matrix grow, how-
ever, PCA might cease to be a good solution in the future.
To this end, different techniques, e.g., independent compo-
nent analysis (ICA), random projections, and non-negative
matrix factorisation (NMF) are being investigated.

At the present time, TSVD is applied over the concept-
feature matrix in order to conveniently reduce its dimen-
sionality and capture the most important correlations. The
objective of such compression is to allow many details in
the blend of ConceptNet and WNA to be removed such that
the blend only consists of a few essential features that rep-
resent the global picture. Applying TSVD on AffectNet, in
fact, causes it to describe other features that could apply
to known affective concepts by analogy: if a concept in
the matrix has no value specified for a feature owned by
many similar concepts, then by analogy the concept is likely
to have that feature as well. In other words, concepts and
features that point in similar directions and, therefore,
have high dot products, are good candidates for analogies.

A pioneering work on understanding and visualising the
affective information associated to natural language text
was conducted by Osgood et al. (1975). Osgood used mul-
ti-dimensional scaling (MDS) to create visualisations of
affective words based on similarity ratings of the words pro-
vided to subjects from different cultures. Words can be
thought of as points in a multi-dimensional space and the
similarity ratings represent the distances between these
words. MDS projects these distances to points in a smaller
dimensional space (usually two or three dimensions). Simi-
larly, AffectiveSpace aims to grasp the semantic and affec-
tive similarity between different concepts by plotting them
into a multi-dimensional vector space.

http://sentic.net/affectnet.zip
http://sentic.net/affectnet.zip
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Differently from Osgood’s space, however, the building
blocks of AffectiveSpace are not simply a limited set of sim-
ilarity ratings between affect words, but rather millions of
confidence scores related to pieces of common-sense
knowledge linked to a hierarchy of affective domain labels.
Rather than merely determined by a few human annotators
and represented as a word–word matrix, in fact, Affective-
Space is built upon an affective common-sense knowledge
base, namely AffectNet, represented as a concept-feature
matrix. After performing TSVD on such matrix, hereby
termed A for the sake of conciseness, a low-rank approxima-
tion of it is obtained, that is, a new matrix eA ¼ Uk Rk VT

k .
This approximation is based on minimising the Frobenius
norm of the difference between A and eA under the con-
straint rankðeAÞ ¼ k. For the Eckart–Young theorem (Eckart
and Young, 1936), it represents the best approximation of A
in the least-square sense, in fact:

mineAjrankðeAÞ¼kjA� eAj ¼ mineAjrankðeAÞ¼kjR�U�eAV j ¼ mineAjrankðeAÞ¼kjR�Sj ð1Þ

assuming that eA has the form eA ¼ USV�, where S is diagonal.
From the rank constraint, i.e., S has k non-zero diagonal en-
tries, the minimum of the above statement is obtained as
follows:

mineAjrankðeAÞ¼kjR� Sj ¼ min
si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
ðri � siÞ2

s
ð2Þ

min
si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
ðri � siÞ2

s
¼ min

si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1
ðri � siÞ2 þ

Xn
i¼kþ1

r2
i

vuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼kþ1

r2
i

vuut ð3Þ

Therefore, eA of rank k is the best approximation of A in
the Frobenius norm sense when ri = si (i = 1, . . . , k) and the
corresponding singular vectors are the same as those of A. If
all but the first k principal components are discarded, com-
mon-sense concepts and emotions are represented by vec-
tors of k coordinates. These coordinates can be seen as
describing concepts in terms of ‘eigenmoods’ that form
the axes of AffectiveSpace, i.e., the basis e0, . . . , ek�1 of
the vector space (Fig. 1). For example, the most significant
eigenmood, e0, represents concepts with positive affective
valence. That is, the larger a concept’s component in the e0
direction is, the more affectively positive it is likely to be.
Concepts with negative e0 components, then, are likely to
have negative affective valence. Thus, by exploiting the
information sharing property of TSVD, concepts with the
same affective valence are likely to have similar features
– that is, concepts conveying the same emotion tend to fall
near each other in AffectiveSpace.

Concept similarity does not depend on their absolute
positions in the vector space, but rather on the angle they
make with the origin. For example concepts such as ‘beau-
tiful day’, ‘birthday party’, and ‘make person happy’ are
found very close in direction in the vector space, while con-
cepts like ‘feel guilty’, ‘be laid off’, and ‘shed tear’ are
found in a completely different direction (nearly opposite
with respect to the centre of the space). The key to perform
common-sense reasoning is to find a good trade-off for rep-
resenting knowledge. Since in life two situations are never
exactly the same, no representation should be too concrete,
or it will not apply to new situations, but, at the same time,
no representation should be too abstract, or it will suppress
too many details. ConceptNet already supports different
representations, in fact, it maintains different ways of con-
veying the same idea with redundant concepts, e.g., ‘car’
and ‘automobile’, that can be reconciled through back-
ground linguistic knowledge, if necessary. Within Affective-
Space, this knowledge representation trade-off can be seen
in the choice of the vector space dimensionality. The num-
ber k of singular values selected to build AffectiveSpace, in
fact, is a measure of the trade-off between precision and
efficiency in the representation of the affective common-
sense knowledge base. The bigger is k, the more precisely
AffectiveSpace represents AffectNet’s knowledge, but gen-
erating the vector space is slower, and so is computing dot
products between concepts.

The smaller is k, on the other hand, the more efficiently
AffectiveSpace represents affective common-sense knowl-
edge both in terms of vector space generation and of dot
product computation. However, too few dimensions risk
not to correctly represent AffectNet as concepts defined
with too few features tend to be too close to each other
in the vector space and, hence, not easily distinguishable
and clusterable. In order to find a good k, AffectiveSpace
was tested on a benchmark for affective common-sense
knowledge (BACK) (Cambria and Hussain, 2012) built by
applying CF-IOF (concept frequency - inverse opinion fre-
quency) (Cambria et al., 2010) on the 5000 posts of the Live-
Journal corpus.3 CF-IOF is a technique that identifies
common domain-dependent semantics in order to evaluate
how important a concept is to a set of opinions concerning
the same topic. Firstly, the frequency of a concept c for a
given domain d is calculated by counting the occurrences
of the concept c in the set of available d-tagged opinions
and dividing the result by the sum of number of occurrences
of all concepts in the set of opinions concerning d. This fre-
quency is then multiplied by the logarithm of the inverse
frequency of the concept in the whole collection of opin-
ions, that is:

CF � IOFc;d ¼
nc;dP
knk;d

log
X
k

nk

nc
ð4Þ

where nc,d is the number of occurrences of concept c in the
set of opinions tagged as d, nk is the total number of con-
cept occurrences, and nc is the number of occurrences of
c in the whole set of opinions. A high weight in CF-IOF is
reached by a high concept frequency in a given domain
and a low frequency of the concept in the whole collection
of opinions. Specifically, CF-IOF weighting was exploited to
filter out common concepts in the LiveJournal corpus and to
detect relevant mood-dependent semantics for the set of 24
emotions defined by Plutchik Plutchik (2001). The result was
a benchmark of 2000 affective concepts that were screened
by 21 English-speaking students who were asked to map
each concept to the 24 different emotional categories,
which form the Hourglass of Emotions (Cambria et al.,

http://patientopinion.org.uk


Fig. 1 A sketch of AffectiveSpace. Affectively positive concepts (in the bottom-left corner) and affectively negative concepts (in
the up-right corner) are floating in the multi-dimensional vector space.

Table 1 Distribution of concepts through the Pleasantness
dimension. The affective information associated with most
concepts concentrates around the centre of the Hourglass,
rather than its extremes.

Level Label Frequency (%)

�G(1) Grief 14.3
�G(2/3) Sadness 19.8
�G(1/3) Pensiveness 11.4
0 Neutral 10.5
+G(1/3) Serenity 20.6
+G(2/3) Joy 18.3
+G(1) Ecstasy 5.1
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2012) (explained in next section). Results obtained were
averaged (Table 1).

BACK’s concepts were compared with the classification
results obtained by applying the AffectiveSpace process
using different values of k, from 1 to 250. The best trade-
off is achieved at 100, as selecting more than 100 singular
values does not improve accuracy significantly. The distribu-
tion of the values of each AffectiveSpace dimension is bell-
shaped, with different centres and different degree of dis-
persion around them. Affective common-sense concepts,
in fact, tend to be close to the origin of the vector space.
In order to more uniformly distribute concept density in
AffectiveSpace, an alternative strategy to represent the
vector space was investigated. Such strategy consists in cen-
tring the values of the distribution of each dimension on the
origin and in mapping dimensions according to a transforma-
tion x 2 R#x� 2 ½�1; 1�. This transformation is often pivotal
for better clustering AffectiveSpace as the vector space
tends to have different grades of dispersion of data points
across different dimensions, with some space regions more
densely populated than others.

The switch to a different space configuration helps to
distribute data more uniformly, possibly leading to an im-
proved (or, at least, different) reasoning process. In partic-
ular, the transformation xij ´ xij � li is first applied, being
li the average of all values of the ith dimension. Then a nor-
malisation is applied, combining the previous transforma-
tion with a new one xij#

xij
a�ri

, where ri is the standard
deviation calculated on the ith dimension and a is a coeffi-
cient that can modify the same proportion of data that is
represented within a specified interval.

Finally, in order to ensure that all components of the
vectors in the defined space are within [�1,1] (i.e., that
the Chebyshev distance between the origin and each vector
is smaller or equal to 1), a final transformation xij ´ s(xij) is
needed, where s(x) is a sigmoid function. Different choices
for the sigmoid function may be made, influencing how
‘fast’ the function approaches the unit value while the inde-
pendent variable approaches infinity. Combining the
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proposed transformations, two possible mapping functions
are expressed in the following formulae (5) and (6):

x�ij ¼ tanh
xij � li

a � ri

� �
ð5Þ

x�ij ¼
xij � li

a � ri þ jxij � lij
ð6Þ

This space transformation leads to two main advantages,
which could be of notable importance depending on the
problem being tackled. Firstly, this different space configu-
ration ensures that each dimension is equally important by
avoiding that the information provided by dimensions with
higher (i.e., more distant from the origin) averages predom-
inates. Secondly, normalising according to the standard
deviations of each dimension allows a more uniform distri-
bution of data around the origin, leading to a full use of
information potential.

5. Emotion categorisation model

In order to accordingly organise and interpret Affective-
Space, an affective categorisation model is needed. The
Hourglass of Emotions (Cambria et al., 2012), a model in-
spired by Plutchik’s studies on human emotions (Plutchik,
2001), was selected. It reinterprets Plutchik’s model by
organising primary emotions around four independent but
concomitant dimensions, whose different levels of activa-
tion make up the total emotional state of the mind. Such
a reinterpretation is inspired by Minsky’s theory of the
mind, according to which brain activity consists of different
independent resources and that emotional states result
from turning some set of these resources on and turning an-
other set of them off Minsky (2006). This way, the model can
potentially synthesise the full range of emotional experi-
ences in terms of Pleasantness, Attention, Sensitivity, and
Aptitude, as the different combined values of the four
affective dimensions can also model affective states we
do not have a specific name for, due to the ambiguity of nat-
ural language and the elusive nature of emotions.

The main motivation for the design of the model is the
concept-level inference of the cognitive and affective
information associated with text. Such faceted information
is needed, within sentic computing, for a feature-based
sentiment analysis, where the affective common-sense
knowledge associated with natural language opinions has
to be objectively assessed. Therefore, the Hourglass model
systematically excludes what are variously known as self-
conscious or moral emotions, e.g., pride, guilt, shame,
embarrassment, moral outrage, or humiliation (Lazarus,
1991; Lewis, 2000; Scherer et al., 2001; Tracy et al.,
2007). Such emotions, in fact, present a blind spot for
models rooted in basic emotions, because they are by def-
inition contingent on subjective moral standards. The dis-
tinction between guilt and shame, for example, is based
in the attribution of negativity to the self or to the act.
So, guilt arises when believing to have done a bad thing,
and shame arises when thinking to be a bad person. This
matters because, in turn, these emotions have been shown
to have different consequences in terms of action tenden-
cies. Likewise, an emotion such as schadenfreude is essen-
tially a form of pleasure, but it is crucially different from
pride or happiness because of the object of the emotion
(the misfortune of another that is not caused by the self),
and the resulting action tendency (do not express). How-
ever, since the Hourglass model currently focuses on the
objective inference of affective information associated
with natural language opinions, appraisal-based emotions
are not taken into account within the present version of
the model.

The Hourglass model, in fact, is a biologically-inspired
and psychologically-motivated model based on the idea that
emotional states result from the selective activation/disac-
tivation of different resources in the brain. Each such selec-
tion changes how we think by changing our brain’s
activities: the state of anger, for example, appears to select
a set of resources that help us react with more speed and
strength while also suppressing some other resources that
usually make us act prudently. Evidence of this theory is
also given by several fMRI experiments showing that there
is a distinct pattern of brain activity that occurs when peo-
ple are experiencing different emotions. Zeki and Romaya,
for example, investigated the neural correlates of hate with
an fMRI procedure (Zeki and Romaya, 2008). In their exper-
iment, people had their brains scanned while viewing pic-
tures of people they hated. The results showed increased
activity in the medial frontal gyrus, right putamen, bilater-
ally in the premotor cortex, in the frontal pole, and bilater-
ally in the medial insula of the human brain. Also the
activity of emotionally enhanced memory retention can be
linked to human evolution (Cahill and McGaugh, 1995). Dur-
ing early development, in fact, responsive behaviour to
environmental events is likely to have progressed as a pro-
cess of trial-and-error.

Survival depended on behavioural patterns that were re-
peated or reinforced through life and death situations.
Through evolution, this process of learning became geneti-
cally embedded in humans and all animal species in what
is known as ‘fight or flight’ instinct (Bradford Cannon,
1915). The primary quantity we can measure about an emo-
tion we feel is its strength. But, when we feel a strong emo-
tion, it is because we feel a very specific emotion. And,
conversely, we cannot feel a specific emotion like fear or
amazement without that emotion being reasonably strong.
For such reasons, the transition between different emo-
tional states is modelled, within the same affective dimen-
sion, using the function GðxÞ ¼ � 1

r
ffiffiffiffi
2p
p e�x

2=2r2 , for its
symmetric inverted bell curve shape that quickly rises up to-
wards the unit value.

In particular, the function models how the level of acti-
vation of each affective dimension varies from the state of
‘emotional void’ (null value) to the state of ‘heightened
emotionality’ (unit value). Justification for assuming that
the Gaussian function (rather than a step or simple linear
function) is appropriate for modelling the variation of emo-
tion intensity is based on research into the neural and
behavioural correlates of emotion, which are assumed to
indicate emotional intensity in some sense. In fact, nobody
genuinely knows what function subjective emotion intensity
follows, because it has never been truly or directly mea-
sured (Barrett, 2006). For example, the so-called Duchenne
smile (a genuine smile indicating pleasure) is characterised
by smooth onset, increasing to an apex, and a smooth, rel-
atively lengthy offset (Krumhuber and Kappas, 2005). More
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generally, Klaus Scherer has argued that emotion is a
process characterised by non-linear relations among its
component elements - especially physiological measures,
which typically look Gaussian (Lewis and Granic, 2002).
Emotions, in fact, are not linear (Plutchik, 2001): the stron-
ger the emotion, the easier it is to be aware of it. Mapping
this space of possible emotions leads to a hourglass shape
(Fig. 2).

It is worth to note that, in the model, the state of ‘emo-
tional void’ is a-dimensional, which contributes to deter-
mine the hourglass shape. Total absence of emotion, in
fact, can be associated with the total absence of reasoning
(or, at least, consciousness) (Csikszentmihalyi, 1991), which
is not an envisaged mental state as, in human mind, there is
never nothing going on.
Fig. 2 The 3D model and the net of the Hourglass of Emotions. Si
negative, the model assumes a hourglass shape.

Table 2 The sentic levels of the Hourglass model. Labels are org
each, whose combined activity constitutes the ‘total state’ of the

Interval Pleasantness Atte

[G(1),G(2/3)) Ecstasy Vigil
[G(2/3),G(1/3)) Joy Antic
[G(1/3),G(0)) Serenity Inter
(G(0),�G(1/3)] Pensiveness Distr
(�G(1/3),�G(2/3)] Sadness Surp
(�G(2/3),�G(1)] Grief Ama
The Hourglass of Emotions, in particular, can be
exploited in the context of HCI to measure how much
respectively: the user is amused by interaction modalities
(Pleasantness), the user is interested in interaction contents
(Attention), the user is comfortable with interaction dynam-
ics (Sensitivity), the user is confident in interaction benefits
(Aptitude). Each affective dimension, in particular, is char-
acterised by six levels of activation (measuring the strength
of an emotion), termed ‘sentic levels’, which represent the
intensity thresholds of the expressed or perceived emotion.
These levels are also labelled as a set of 24 basic emotions
(Plutchik, 2001), six for each of the affective dimensions, in
a way that allows the model to specify the affective
information associated with text both in a dimensional
and in a discrete form (Table 2). The dimensional form, in
nce affective states go from strongly positive to null to strongly

anised into four affective dimensions with six different levels
mind.

ntion Sensitivity Aptitude

ance Rage Admiration
ipation Anger Trust
est Annoyance Acceptance
action Apprehension Boredom
rise Fear Disgust
zement Terror Loathing
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particular, is termed ‘sentic vector’ and it is a four-dimen-
sional float vector that can potentially synthesise the full
range of emotional experiences in terms of Pleasantness,
Attention, Sensitivity, and Aptitude.

In the model, the vertical dimension represents the
intensity of the different affective dimensions, i.e., their
level of activation, while the radial dimension represents
K-lines (Minsky, 1986) that can activate configurations of
the mind, which can either last just a few seconds or years.
The model follows the pattern used in colour theory and re-
search in order to obtain judgements about combinations,
i.e., the emotions that result when two or more fundamen-
tal emotions are combined, in the same way that red and
blue make purple. Hence, some particular sets of sentic
vectors have special names, as they specify well-known
compound emotions. For example, the set of sentic vectors
with a level of Pleasantness 2 [G(2/3),G(1/3)), i.e., joy, a
level of Aptitude 2 [G(2/3),G(1/3)), i.e., trust, and a minor
magnitude of Attention and Sensitivity, are termed ‘love
sentic vectors’ since they specify the compound emotion
of love.

More complex emotions can be synthesised by using three,
or even four, sentic levels, e.g., joy + trust + anger = jeal-
ousy. Therefore, analogous to the way primary colours com-
bine to generate different colour gradations (and even
colours we do not have a name for), the primary emotions
of the Hourglass model can blend to form the full spectrum
of human emotional experience. Beyond emotion detection,
the Hourglass model is also used for polarity detection tasks.
Since polarity is strongly connected to attitudes and feelings,
in fact, it is defined in terms of the four affective dimensions,
according to the formula:

p¼
XN
i¼1

PleasantnessðciÞþ jAttentionðciÞj� jSensitivityðciÞjþAptitudeðciÞ
3N

ð7Þ

where ci is an input concept, N the total number of con-
cepts, and 3 the normalisation factor (as the Hourglass
dimensions are defined as float 2 [�1,+1]). In the formula,
Attention is taken as absolute value since both its positive
and negative intensity values correspond to positive polarity
values (e.g., ‘surprise’ is negative in the sense of lack of
Attention, but positive from a polarity point of view). Sim-
ilarly, Sensitivity is taken as negative absolute value since
both its positive and negative intensity values correspond
to negative polarity values (e.g., ‘anger’ is positive in the
sense of level of activation of Sensitivity, but negative in
terms of polarity). The formula can be seen as one of the
first attempts to show a clear connection between emotion
recognition (sentiment analysis) and polarity detection
(opinion mining).

6. Bio-inspired opinion mining engine

The proposed architecture extends a framework previously
proposed by the authors (Mazzocco et al., 2012) and
investigates if an emulation of the biological neural system,
represented by two ANNs, could outperform the state-of-
the-art k-medoids clustering approach (Cambria et al.,
2011). Similarly to previous works (Cambria et al., 2012;
Havasi et al., 2009; Cambria et al., 2010), the proposed
architecture uses PCA to organise the space where concepts
lie but, rather than using standard clustering techniques,
e.g., k-NN or k-medoids, for reasoning on how such con-
cepts are semantically related to each other, it exploits a
human-inspired cognitive architecture paradigm (Samsono-
vich, 2010) to better deal with non-linearities of the result-
ing space and, hence, more accurately infer the semantic
and affective information associated with common-sense
concepts, based on the presented Hourglass model. Con-
trary to any clustering algorithm, the emotion recognition
task is independent from both concepts’ absolute and rela-
tive positions in the vector space. The eventual aim of the
proposed ANNs developed in this study is to predict which
class each concept belongs to (i.e., its level of affective va-
lence in a specific dimension of the Hourglass model). Two
different approaches may be adopted in order to set up an
ANN: a ‘discrete’ neural network (DNN) and a ‘continuous’
neural network (CNN). DNN, in particular, is expected to re-
turn seven different real-valued outputs yk 2 [0,1] for
k = 1, 2, . . . , 7, each showing the degree of belonging to a
specified affective level, while CNN provides a single real-
valued output y 2 [�1,1], corresponding to the best guess
of the level of affective valence (assuming that categories
are equispaced within the considered dimension).

In both cases, a further step is required in order to obtain
a final classification output: for DNN the best selection
strategy seems to be the choice of the class with the highest
degree of belonging, while for CNN the easiest approach is
to round off the output to get an integer corresponding to
the class. Since the task of choosing from these two ap-
proaches is not easily solvable a priori, both approaches
are adopted and compared in this study. Therefore, two
multi-layer perceptron neural networks with three layers
(one input layer, one hidden layer and one output layer)
were set up. The input vector x(k) is built so that x(k)0 = 1
(the ‘bias node’) and [x(k)1, x(k)2, . . . , x(k)100] = a(k) for the
kth concept of the dataset. The target output is, for DNN,
a vector y(k) having y(k)i = 1 if b(k) = i � 4 and y(k)i = 0 other-
wise, for each i = 1, 2, . . . , 7. On the other hand, for CNN
the target output is a single value y(k) = b(k).

Let us assume that the hidden layer has H neurons; the
input and the hidden layers are then linked by Eq. (8) where
wmn 2W, that is the matrix of weights (of dimensions
H · 101) defined during the network training:

hj ¼ tanh
X100
i¼0

wjixi

 !
j ¼ 1; 2; . . . ;H ð8Þ

The relationships between the hidden and the output layers
are expressed in Eqs. (9) and (10) for DNN and CNN respec-
tively, where vmn 2 V, which is a matrix of weights (of
dimensions 7 · H) and v a vector of weights (of dimension
H) built during the network training. The output is com-
puted as follows:

yj ¼ tanh
XH
i¼1

vjihi

 !
j ¼ 1; 2; . . . ; 7 ð9Þ

y ¼ tanhðvT � hÞ ð10Þ

It is worth noting that different choices of the activation
functions, as well as other design choices, are possible;
however, a definition of the best structure of the used
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neural networks besides being quite difficult to state (due
to, for example, the dataset dependency) is beyond the
scope of this study.

Finally, further transformations of y 2 R7#b� 2 H and
y 2 R#b� 2 H are required. They are proposed in Eqs.
(11) and (12):

b� ¼ dT � �1;� 1

r
ffiffiffiffiffiffi
2p
p e�4=18r2;� 1

r
ffiffiffiffiffiffi
2p
p e�1=18r2; 0;

�
1

r
ffiffiffiffiffiffi
2p
p e�1=18r2;

1

r
ffiffiffiffiffiffi
2p
p e�4=18r2;þ1

�
ð11Þ

b� ¼ roundðyÞ ð12Þ

where di = di,m for i = 1, 2, . . . , 7, d being the Kronecker’s
delta, m = iŒyi = maxjyj and round(x) a function R#Z round-
ing x up to the closest integer. The neural networks training
is conducted using the gradient descent optimisation algo-
rithm with the inclusion of a momentum term, which has
been proven to improve the algorithm speed of convergence
(Qian, 1999).

DUðsÞ ¼ �mrEðUðsÞÞ þ lDUðs�1Þ ð13Þ

The matrices (or vectors) of weights (U) are then up-
dated at each iteration s according to Eq. (13), where E is
calculated with ej ¼ bj � b�j for the second layer of weights

(where j = 1, 2, . . . , 7 for DNN and j = 1 for CNN), and

ej ¼
P

k

b�jðsÞ
b�jðs�1Þ

ujk for the first layer of weights, respectively.

In order to evaluate the designed system, the ANNs were
tested on the benchmark for affective common-sense
knowledge (BACK) (Cambria and Hussain, 2012). To avoid
the risk of overfitting, a cross-validation approach was
adopted. The networks were trained 10 times (10-fold
cross-validation), each of which excluded 10% of dataset en-
tries that are used for evaluating the performance of the
system; the excluded 10% is then cycled so that, at the
end of all simulations, each dataset entry has been used ex-
actly once to test the system. In order to evaluate the accu-
racy of the model, the percentage of entries where b* = b
(‘strict accuracy’) is considered. However, since the used
dataset can include noise and entries may incorporate a cer-
tain degree of subjectiveness, this criterion was relaxed by
considering the accuracy of entries which have Œb* � bŒ 6 1
(‘relaxed accuracy’).

The performance of the proposed ANNs are tabulated in
Table 3 where they are compared with the state-of-the-art
k-medoids approach, k-nearest neighbour (k-NN), and a ran-
dom classifier. A trial-and-error approach was adopted for
the network parameters tuning: for CNN the best perfor-
mance was obtained after three iterations (when the error
stopped decreasing significantly) with H = 10, learning rate
Table 3 Performance comparison. Bold values represent
best values for each specific category.

Strict acc. (%) Relaxed acc. (%)

Random 14.3 40.1
k-NN 41.9 72.3
k-medoids 43.2 74.1
DNN 46.9 76.5
CNN 39.7 84.3
m = 0.1, momentum factor l = 0.2; for DNN the best set of
parameters obtained were H = 15, m = 0.05, l = 0.05 with
best performance reached after an average of 10 iterations.
As it can be seen from Table 3, the proposed ANN ap-
proaches outperform the state-of-the-art k-medoids model,
as well as the k-NN model and the random classifier.

Both proposed models improved the ‘relaxed accuracy’
(with the CNN producing a considerable 10% performance
improvement) while the DNN was able to outperform the
benchmark for the ‘strict accuracy’ case. In order to test the
performance of the proposed approach in a more practical
environment, the ANNs were also embedded into an opinion
mining engine (Cambria and Hussain, 2012) for the inference
of the cognitive and affective information associatedwith nat-
ural language. Such an engine consists of four main compo-
nents: a pre-processing module, which performs a first skim
of text; a semantic parser, whose aim is to extract concepts
from the opinionated text; a target spotting module, which
identifies opinion targets; an affect interpreter, for emotion
recognitionandpolaritydetection. Thepre-processingmodule
firstly interprets all the affective valence indicators usually
contained in opinionated text such as special punctuation,
complete upper-case words, cross-linguistic onomatopoeias,
exclamationwords, negations, degreeadverbs and emoticons.
Secondly, it converts text to lower-case and, after lemmatiz-
ing it, splits the opinion into single clauses according to gram-
matical conjunctions and punctuation. Then, the semantic
parser deconstructs text into concepts using a lexicon based
on sequences of lexemes that represent multiple-word con-
cepts extracted from ConceptNet, WordNet and other linguis-
tic resources. These n-grams are not used blindly as fixedword
patterns but exploited as reference for themodule, in order to
extract multiple-word concepts from information-rich sen-
tences. So, differently fromother shallow parsers, themodule
can recognise complex concepts also when irregular verbs are
used or when these are interspersed with adjective and ad-
verbs, e.g., the concept ‘buy christmas present’ in the sen-
tence ‘‘I bought a lot of very nice Christmas presents’’. The
semantic parser, additionally, provides, for each retrieved
concept, the relative frequency, valence and status, that is
the concept’s occurrence in the text, its positive or negative
connotation and the degree of intensity with which the con-
cept is expressed.

For each clause, the module outputs a small bag of con-
cepts (SBoC), which is later on analyzed separately by the
target spotting module and the affect interpreter to infer
the cognitive and affective information associated with
the input text, respectively. In case any of the detected
concepts is found more than once in the vector space (that
is, any of the concepts has multiple senses), all the SBoC
concepts are exploited for a context-dependent coarse
sense disambiguation. In particular, to represent the ex-
pected semantic value of the clause as a whole, the vectors
corresponding to all concepts in the clause (in their ambig-
uous form) can be averaged together. The resulting vector
does not represent a single meaning but the ‘ad-hoc cate-
gory’ of meanings that are similar to the various possible
meanings of concepts in the clause (Havasi et al., 2010).
Then, to assign the correct sense to the ambiguous concept,
the sense of each concept that has the highest dot product
(and thus the strongest similarity) with the clause vector has
to be seeked.



Table 4 Structured output example of opinion mining engine.

Opinion target Category Moods Polarity

‘iphone4’ ‘phones’, ‘electronics’ ‘ecstasy’, ‘interest’ +0.71
‘speaker’ ‘electronics’, ‘music’ ‘annoyance’ �0.34
‘touchscreen’ ‘electronics’ ‘ecstasy’, ‘anticipation’ +0.82
‘camera’ ‘photography’, ‘electronics’ ‘acceptance’ +0.56

Table 5 F-measure values relative to PatientOpinion evaluation. Bold values represent best values for each specific category.

k-NN (%) k-Medoids (%) DNN (%) CNN (%)

Clinical service 70.1 72.9 77.2 81.8

Communication 69.8 75.3 75.5 78.1

Food 79.4 79.6 83.1 79.7
Parking 71.0 72.5
Staff 76.1 76.1 82.1 77.9
Timeliness 72.3 73.0 77.4 79.6
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The target spotting module aims to individuate one or
more opinion targets, such as people, places, events and
ideas, from the input concepts. This is done by projecting
the concepts of each SBoC into the graph representation
of AffectNet, in order to assign these to a specific
conceptual class. The categorisation does not consist in sim-
ply labelling each concept but also in assigning a confidence
score to each category label, which is directly proportional
to the value of belonging to a specific conceptual cluster
(number of steps in the AffectNet graph). The affect inter-
preter, in turn, projects the concepts of each SBoC into
AffectiveSpace and feeds their coordinates to both DNN
and CNN, in order to assign such concepts to a specific
affective class, and hence, calculate polarity in terms of
the Hourglass dimensions, as specified in formula (7).

As an example of how the opinion mining engine works,
intermediate and final outputs obtained when a natural lan-
guage opinion is given as input to the system can be exam-
ined. The tweet ‘‘I think iPhone4 is the top of the heap! OK,
the speaker is not the best i hv ever seen bt touchscreen
really puts me on cloud 9. . . camera looks pretty good
too!’’ is selected. After the pre-processing and semantic
parsing operations, the following SBoCs are obtained:
SBoC#1:
<Concept: ‘think’>
<Concept: ‘iphone4’>
<Concept: ‘top heap’>

SBoC#2:
<Concept: ‘ok’>
<Concept: ‘speaker’>
<Concept: !‘good’++>
<Concept: ‘see’>

SBoC#3:
<Concept: ‘touchscreen’>
<Concept: ‘put cloud nine’++>

SBoC#4:
<Concept: ‘camera’>
<Concept: ‘look good’–>
4 http://patientopinion.org.uk.
These are then concurrently processed by the target spot-
74.0 76.7
ting module and the affect interpreter, which detect the
opinion targets and output, for each of them, the relative
affective information both in a discrete way, with one or
more emotional labels, and in a dimensional way, with a
polarity value 2 [�1,+1] (as shown in Table 4). In order to
evaluate the resulting opinion mining engine, a patient opin-
ion database (Cambria and Hussain, 2012) is used, and results
obtained using k-NN and k-medoids are compared with those
obtained using the ANNs. The resource is a dataset obtained
from PatientOpinion,4 a social enterprise pioneering an on-
line feedback service for users of the UK national health ser-
vice to enable people to share their recent experience of
local health services online. It is a manually tagged dataset
of 2000 patient opinions that associates to each post a cate-
gory (namely, clinical service, communication, food, park-
ing, staff, and timeliness) and a positive or negative
polarity. There are no ethical issues involved in the data used
in the experimentation as tweets, blogposts, and patient
opinions were all anonymised. In order to guarantee full ano-
nymity, moreover, the text associated with tweets, blog-
posts, and patient opinions has never been wholly reported
in the proposed tables and examples. The dataset is hereby
used to test the combined detection of opinion targets and
the polarity associated with these. Results show that DNN
and CNN generally outperform k-medoids and k-NN. In partic-
ular, DNNachieves better accuracy for categories inwhich af-
fect is usually conveyed explicitly, e.g., ‘staff’ and ‘food’,
while CNN turns out to be a better choice when sentiment
is expressed in a more subtle manner (Table 5).

7. Conclusions and future work

With the advent of Web 2.0, the extraction of opinions and
sentiments from the huge amount of available unstructured
information derived from blog, wikis, and social networks is
a very arduous task. While existing approaches to opinion
mining mainly work at a syntactic-level, computational
techniques and tools were hereby employed to analyze text

http://patientopinion.org.uk
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natural language at a semantic-level. In particular, we
developed a bio-inspired opinion mining engine that, first,
deconstructs natural language text into concepts, then, en-
codes such concepts as coordinates of a multi-dimensional
vector space, and finally infers the semantic and affective
information associated with them by means of two ANNs.
We also demonstrated how such a human-like reasoning
framework outperforms state-of-the-art clustering tech-
niques for opinion mining.

The integration of multi-dimensional scaling and ANNs, in
fact, has embedded a bio-inspired way of reasoning to carry
out cognitive tasks such as emotion recognition and polarity
detection. Such an ensemble model better grasps the non-
linearities of the vector space of affective common-sense
knowledge and, hence, improves the performance of the
opinion mining engine.

Since this study has shown promising results, further re-
search is now planned to understand how artificial intelli-
gence techniques can affectively analyze natural language
text: structured data collection is planned to extend the
BACK database, which will be made publicly available to en-
able comparison with other reasoning models. This ex-
tended dataset will be exploited to assess how other
biologically inspired frameworks, e.g., extreme learning
machines (Decherchi et al., 2013), could further improve
the way multi-word expressions are organised in a brain-like
universe of natural language concepts and, hence, refine
the sensemaking process of the affective common-sense
reasoning model.
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