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Abstract. Discriminative language models (DLMs) have been widely
used for reranking competing hypotheses produced by an Automatic
Speech Recognition (ASR) system. While existing DLMs suffer from
limited generalization power, we propose a novel DLM based on a dis-
criminatively trained Restricted Boltzmann Machine (RBM). The hid-
den layer of the RBM improves generalization and allows for employing
additional prior knowledge, including pre-trained parameters and entity-
related prior. Our approach outperforms the single-layer-perceptron (SLP)
reranking model, and fusing our approach with SLP achieves up to 1.3%
absolute Word Error Rate (WER) reduction and a relative 180% im-
provement in terms of WER reduction over the SLP reranker. In partic-
ular, it shows that the proposed prior informed RBM reranker achieves
largest ASR error reduction (3.1% absolute WER) on content words.

1 Introduction

Reranking models have been shown effective for reducing errors in a variety
of Natural Language Processing tasks such as Named Entity Recognition [1,
2], Syntactic Parsing [3, 4] and Statistical Machine Translation [5]. A reranking
model typically treat the baseline system as a black box and is trained to rank
the competing hypotheses based on more complex or global information.

In Automatic Speech Recognition (ASR), discriminative language model
(DLM) was first introduced by Roark et al. [6] for reranking ASR hypotheses.
They adopt a single perceptron to modify the confidence scores of hypothe-
ses generated by a baseline ASR system. By using only n-gram features, their
reranking model was shown capable of reducing the Word Error Rate (WER)
of an ASR system. His work is followed by several variants with a variety of
feature choices such as syntactic features [7, 8], which try to capture correlation
between simple features on the feature level. However, existing DLMs still suffer
from poor generalization power and are vulnerable to shortage of training data,
because most of them rely on linear or log linear models that fail to take into
consideration the correlation of input features on the model level. Apart from
feature engineering, using hidden variables encoding semantic information helps
improving the generalization power.



Koo et al. [4] proposes a hidden-variable model to rerank syntactic parsing
trees. By linking input features to hidden states corresponding to word senses or
classes, they achieves improved accuracy over a linear baseline. Inspired by the
success of Koo et al., we propose to use the computational structure of Restricted
Boltzmann Machine (RBM) [9] for the task of ASR hypotheses reranking. RBM
is a neural network composed of one hidden layer and one input layer. The
hidden layer of RBM has been shown capable of capturing high-order correlation
and semantic information in the context of language modeling [10, 11]. These
approaches model the probability of a fixed length of word sequences, i.e., N -
grams, using only local information, and are trained with a generative objective
function. However, RBM cannot be directly used for ASR reranking due to its
generative training manner.

We propose two modifications to train RBM in a more task-specific way. We
modify the energy function of RBM to incorporate the ASR confidence score,
which has been proved critical for reranking by previous DLMs [6–8]. We then
propose a novel discriminative objective function for training RBM with N -best
lists of ASR hypotheses. Our method differs from existing RBM-based language
models [10, 11] in two major aspects. Firstly, the proposed RBM reranker is
trained discriminatively. Secondly, RBM in our method represents sentences of
variable length as global feature vectors. Another attractive property of RBM
is that the computational structure is flexible enough to incorporate various
sources of prior knowledge [12]. As function words have little meanings and
are less important for language understanding [13], we decide to focus more on
content words, e.g., named entities. We hence further integrate to our model two
types of prior knowledge: named entity related prior and a pre-trained hidden
layer.

To our knowledge, this paper is the first to consider using hidden layer and
prior knowledge in the context of ASR hypotheses reranking. The remainder of
this paper is structured as follows: Section 2 describes in detail the proposed
work; Section 3 shows the empirical results as well as analyses; finally, Section
4 concludes this paper and discusses about future work.

2 Training RBM for ASR Reranking

2.1 Restricted Boltzmann Machine

A Restricted Boltzmann Machine [9] (see Figure 1) is a neural network composed
of : one n-dimension input feature layer φ(t) = [φ1(t), φ2(t), · · · , φn(t)], which is
a global feature vector extracted for a raw input t, and one d-dimension binary
hidden layer h = [h1, h2, · · · , hd]. The joint probability PRBM(t, h) of hidden
variables and raw input is defined as

PRBM(t, h) =
e−ERBM(t,h)∑
t,h e

−ERBM(t,h)

ERBM(t, h) = −φ(t)TWh− bTφ(t)− cTh,



where W ∈ Rn×d is the matrix specifying the weights of connections between
hidden and input layer, and b ∈ Rn and c ∈ Rd are the bias vectors of the two
layers. ERBM(t, h) is called the energy function of RBM. The probability of a
raw input t is then defined as the marginal probability of t

PRBM(t) =
∑
h

PRBM(t, h)

, and the training objective is to maximize the log likelihood of training data D∑
t∈D

lnPRBM(t)

2.2 Maximum Margin Training for RBM-based Reranker

The goal of generative training of RBM is to learn a probability distribution,
which is not necessary for choosing correct ASR hypotheses. Instead, the discrim-
inative training allows the model to explicitly select ASR hypotheses containing
fewer errors. In this section, we describe our discriminatively trained RBM-bsed
reranking model, denoted as dRBM.

Before introducing the training objective function, we first introduce the
energy function of RBM model. ASR posterior probabilities produced by the
baseline ASR system have been shown useful for reranking in previous works on
DLM [6–8]. We hence add ASR posterior to the energy function of RBM. The
modified energy function is expressed as

EdRBM(t, h) = ERBM(t, h) + Easr(t)

Easr(t) = −w0 ln(P (t|a)),

where P (t|a) is the posterior probability of a given ASR hypothesis t given the
acoustic input a, and w0 is the weight of ASR confidence score fixed during
training. We represent each hypothesis as a global feature vector φ(t) using
a predefined set of feature functions. In this paper, we mainly consider using
unigram features, yet using more complicated features does not need to change
the model.

Inspired by the maximum margin training for Bayesian Networks [14], we
adopt a discriminative objective function L using likelihood ratio,

L =
1

|D|
∑
a∈D

∑
t′∈GEN(a)

max(1− ln
PdRBM(t̂)

PdRBM(t′)
, 0),

where D is the training set for the discriminative training of RBM and |D|
denotes the number of utterances in training set. GEN(a) refers to the list of
N -best hypotheses generated by the baseline ASR system for the acoustic input
a, while t̂ is the oracle-best in the N -best list of t. Intuitively, the learning
process finds the parameter setting maximizing the margin between the oracle-
best hypotheses and other hypotheses in the N -best list. The subgradient of the
objective function is



∂L

∂θ
=

∑
a∈D

∑
t′∈GEN(a)

I(F(t̂)−F(t′) < 1)(
∂F(t′)

∂θ
− ∂F(t̂)

∂θ
),

where F(·) is the free energy of RBM defined as

F(t) = − ln
∑
h

e−EdRBM(t,h)

Algorithm 1: Discriminative training for RBM

Input:
D: the training data set
GEN(a): N -best list for an utterance t in the reference
λ: learning rate
for k=1:K do

for a ∈ D do
Positive:
t̂ = argmint′∈GEN(a)WER(t′)
Negative:
T− = {t′|1 + Score(t′) > Score(t̂)}, t′ ∈ GEN(t)}
for t′ ∈ T− do

θ ← θ + λ ∂−F(t̂)
∂θ

θ ← θ − λ ∂−F(t′)
∂θ

The training algorithm is described in Algorithm 1. For each acoustic input
in training set, we select a set of hypotheses T−, which are ranked higher than
the oracle best hypothesis. Based on our analysis of the loss function, we boost
the score of oracle best with its derivate of negative free energy and penalize
hypothesis in T− with their derivates of negative free energy. Note that, as
compared with standard standard RBM training [15], which iterates over input
space or samples of input space, our discriminative training needs only to iterate
over the N -best list which grows linearly with the size of training data and
N -best list.

2.3 Training with Prior Knowledge

The binary hidden layer of RBM allows for easily incorporating prior knowl-
edge into the reranking model. We consider using two types of prior knowledge:
named entity labels and pretrained latent layer from texts. Firstly, to improve
the capability of recognizing content words, we capture prior of a special class
of content words – named entities. As entity related prior also encodes informa-
tion about word classes, it helps improving the generalization power of language
models [16] as well.
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Fig. 1. Structure of RBM with Entity-related Prior

Specifically, we extract pairs of named entity words and their classes from
texts using a named entity tagger, which annotates the text with 3 widely-
adopted named entity classes, i.e., LOCATION, ORGANIZATION and PER-
SON. As show in Fig. 1, 3 variables in the hidden layer of RBM are used to
represent named entity classes. For purpose of reducing ambiguity, we remove
words belonging to multiple entity classes. We denote the list of entity-class pairs
as G = {w, e}, where w is an index of the unigram feature in the input layer, and
e an index of entity-class variable in the hidden layer. The objective function is
then augmented with an entity-related regularizer,

L− λ ln
∏

w,e∈G

∏
(P (he = 1|φw)− 1)2,

P (he|φw) = σ(ce +We,wφw).

As introduced in Wang et al. [12], P (he|φw) denotes the probability of a hidden
variable he being activated by a given input feature φw.

To handle the data sparsity, we initiate connection matrix W of RBM with
values pretrained using a large text corpora and the generative training. The
pretraining captures the distributional semantics of input features [17].

2.4 Scoring ASR Hypotheses

To score a given hypothesis, we propose two scoring functions using our RBM-
based reranker and its combination with SLP. First of all, the RBM-based
reranking score SRBM is defined as the logarithm of the unnormalized proba-
bility P̃dRBM(t) assigned by the RBM-based reranker solely,



SRBM(t) = ln P̃dRBM(t)

= w0 ln(P (t|a))︸ ︷︷ ︸
ASR posterior

+

n∑
i

biφi(t)︸ ︷︷ ︸
linear part

+

d∑
j

ln(1 + e(ci+Wiφ(t)))︸ ︷︷ ︸
hidden variable part

.

As shown above, the re-scoring function is composed of the original ASR pos-
terior, a linear bias, and the hidden variable component. In addition, SLP and
RBM are likely to have encoded information complementary to each other due
to their different structures and training methods. Therefore, we propose a late
fusion of the two methods, which combines their confidence scores in the testing
phase. The combined reranking score is

S(t) = SRBM(t) + αSSLP(t),

where SSLP(t) is the single perceptron based confidence score weighted by α.

3 Related Work

DLM has been first introduced by Roark et al. in [6], where simple features like
N -gram was shown able to effectively reduce WER. This previous work is using
a Single Layer Perceptron (SLP) to modify the original posterior probabilities
of the outputs of a baseline ASR system using a linear function,

logP (t|a) +
∑
i

wifi(t),

where logP (t|a) is the log probability of a word sequence t given the acoustic
signal a, and {fi(·)} are the set of feature functions of an utterance weighted by
{wi}. Different types of features extracted from syntactic trees [7] and depen-
dency trees [8] have also been used to enrich the feature set.

Apart from feature engineering and using linear combination of feature func-
tions, inferring hidden variables from the observed input captures semantic in-
formation related to word classes and word senses. Our work is closely related
with Koo et al. [4] who proposed a hidden-variable model to rerank syntactic
parsing trees. For the tractability of their model, they put constrains on the
connections between latent variables and visible variables (i.e., input layer) by
splitting features into two sets. However, the way they divide features is specific
to syntactic parsing, and thus is not applicable to our task. Our model differs
from Koo et al. [4] in the sense that the connection is not constrained by their
feature type, but instead relying on the structure of RBM to build connections
between input and hidden layer.



RBM-based models [10, 11] have been explored for language modeling. Both
approaches model the probability of a fixed length of word sequences, i.e., N -
grams, and trained with a generative objective function. Our method differs from
these methods in two major aspects: the training of proposed RBM reranker is
discriminative, and it represents sentences of variable length as global feature
vectors.

4 Experiment

4.1 Dataset

We evaluate our work on the latest release of TedLium Corpus [18] which is a
set of audio and manually transcribed texts of Ted talks. As shown in Table 1.
We split the training set of TedLium Version 2 into two parts: former Tedlium
Training set Version 1 and the rest. The Version 1 part is a set of 774 Ted
talks consisting of 56,800 utterances and more than 1.7 million words, while the
remaining of the TedLium training set contains another 718 talks. The evaluation
set of our experiment is the testing set of TedLium corpus, which is composed
of 11 talks. Our text corpus is the ukWaC corpus [19], which is a collection of
texts containing about 1.8 billion words.

Utterances Talks Words

ASR AM Train 56.8K 774 1.7M
Reranking Train(speech) 36.2K 718 0.9M
Reranking Train(text) 24M - 1.8B
Reranking Test 1.15K 11 29K

Table 1. Characteristics of the data sets used in experiments

4.2 Baseline

The baseline ASR system is based on KALDI1 toolkit [20] including a DNN-
based acoustic model. It uses a pre-trained language model2, which is released
as part of Sphinx project [21] and has achieved a perplexity of 158.3 on a corpus
of Ted Talks. The acoustic model is trained using the training set of TedLium
Version 1. The rest of training set of TedLium Version 2 is used for training
reranking models. The baseline SLP reranker is trained by following the work of
Lambert et al. [8] that randomly selects K pairs of hypotheses from the N -best
lists. Specifically, we randomly select 100 pairs from the 100-best list. Learning
process is ran for 10 iterations, as we cannot observe further WER reduction
with more iterations.

1 http://kaldi.sourceforge.net/
2 http://cmusphinx.sourceforge.net/2013/01/a-new-english-language-model-release/



4.3 RBM Setup

We refer to the system integrating prior knowledge with dRBM as p-dRBM.
Both dRBM and p-dRBM use 200 hidden units and are trained using the same
data set and 100-best hypotheses as SLP reranker. Since our focus is not on
feature engineering, and for simplicity of interpreting our experiment results,
we use only unigram features (i.e., single words) in our experiments, which have
also been shown as the most effective features by previous works [8]. For training
p-dRBM, we first crawled down a set of text summaries of ted talks from Ted
website. We then create a list of 20 words for each entity category by tagging
the collected text summaries with Stanford named entity recognition tool [22]
following description in section 2.3. A basic RBM is trained using ukWaC corpus
and used for initiating the connection matrix W of p-dRBM. The late fusion of
SLP and our proposed methods are denoted as SLP + dRBM and SLP + p-
dRBM. We use λ = 0.01 and α = 1.0 as weights of entity-related regularizer and
SLP scores in late fusion.

4.4 Evaluation

First of all, we analyze the behavior of p-dRBM by computing the most-activated
words by p-dRBM as shown in Table 2. As shown in previous section, the scoring
function used by our method is a combination of ASR confidence score, a linear
component (denoted as p-dRBM-L) and a hidden-variable component (denoted
as p-dRBM-H). p-dRBM then takes as input one-hot vectors of words to compute
their reranking scores. It shows that the linear component is mainly accounting
for the function words, while the hidden component favors content words that
are mostly nouns and adjectives. The final scoring function is a trade-off between
function words and content words through a combination of the two components.

p-dRBM-H p-dRBM-L p-dRBM

integrated of integrated
demeanor and demeanor
disgust the disgust
tattoo to tattoo
formula a formula

Table 2. Most activated word by p-dRBM

To investigate on what is captured by RBM and potentially effective for
improving the Word Error Rate (WER), we represent each hidden variable as
a vector of words. These vectors represent how much a word is activated by a
given hidden variable. Table 3 shows a selected set of hidden variables that can
be seen as a set of topics. We found that RBM can capture meaningful topics by
using only sentence-level co-occurrence. We then represent each word as a vector
of hidden variables by taking the rows of the matrix W ∈ R|V |×d of p-dRBM.



working media higher education entertainment

security news cambridge scene
services forum mary story
office business professor tv
home press william songs
for new royal moving
Table 3. Example topics learned by p-dRBM

We rank words based on their cosine similarity with the queries and select
the top 5 words for four query words. As shown in Table 4, the top ranked
words all seem very relevant to the query words. Since our RBM is trained with
sentence-level concurrence, which is different from the window-based methods,
the ’similarity’ looks more like a topical relatedness rather than syntactical sim-
ilarity. In general, we can conclude that the resultant RBM-based reranking
model to some extent captures the distributional semantics related to the topics
of words.

japan film bible computer

india story greatest software
italy music holy database
asia beautiful truth digital
germany famous gospel user
china classic spirit server

Table 4. Most-similar words for queries using p-dRBM word embeddings

As shown in Table 5, we evaluate WER of reranking systems. It shows that
the proposed discriminatively trained RBM produces greater WER reduction
than baseline SLP rerankers. Effectiveness of using prior knowledge is validated
by further improving WER over dRBM. The greatest absolute WER reduction
(1.3%) is achieved by the late fusion of SLP and p-dRBM, which confirms that
our reranker captures information complementary to SLP.

WER WER (TF-IDF≥ 3)

ASR 1-best 18.23 46.9
Oracle 1-best 11.42 36.1

SLP 17.76 46.3
dRBM 17.51 44.6
p-dRBM 17.36 43.8
SLP + dRBM 17.11 45.2
SLP + p-dRBM 16.91 44.2

Table 5. Performance of reranking model on TedLium corpus



Since the latent layer of p-dRBM incorporates prior knowledge related to
content words (e.g., named entities), it is desirable that the proposed method
can better recognize content words, which are more critical for downstream ap-
plications such as spoken language understanding. To evaluate the performance
of our proposed methods on recognizing content words in a more general way,
we words that have higher TF-IDF scores are more likely to be content words.
We hence assign more weight to errors involving a set of keywords with high
TF-IDF instead of treating all words equally. Specifically, the list of keywords
are chosen based on TF-IDF scores (≥ 3.0) computed from whole TedLium cor-
pus. We use the weighted-word-scoring implementation in NIST SCLITE tool 3

by aggressively assigning weight 1.0 to words on the list and 0.0 to the rest.

Fig. 2. WER reduction for words versus TF-IDF scores

Table 5 clearly shows that baseline reranking systems (SLP) fail to reduce
much WER for selected keywords. In comparison, proposed RBM rerankers,
especially p-dRBM, have reduced more errors on chosen keywords without sac-
rificing overall performance. We further break down the TF-IDF scores into 3
bins. Figure 2 shows the WER reduction by all three approaches. Thanks to
hidden variables, our methods are capable of better capturing the discriminative
information for most content words. In particular, p-dRBM is shown working
significantly better than other methods on words with medium TF-IDF scores
(<5), which is a result of injecting named entity words, e.g., washington (TF-
IDF= 3.87), that mostly have TF-IDF between 3.0 and 5.0.

3 http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm



5 Conclusion

In this paper, we proposed an RBM-based language model that is discrimina-
tively trained for reranking ASR hypotheses. In comparison with single per-
ceptron based reranker, our proposed approach reduces more word errors. The
success of fusing single perceptron and RBM-based reranker suggests that two
models actually capture complementary information useful for selecting less er-
roneous ASR hypotheses. In addition, we found that introducing prior knowledge
to RBM-based reranker results in a better recognition of content words. In the
future, we would like to explore the use of lexical knowledge obtained from differ-
ent resources, e.g., WordNet [23] or SenticNet [24], as additional prior knowledge
for the proposed model.
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