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Abstract—Designing predictive models for subjective problems
in natural language processing (NLP) remains challenging. This
is mainly due to its non-deterministic nature and different
perceptions of the content by different humans. It may be solved
by Personalized Natural Language Processing (PNLP), where
the model exploits additional information about the reader to
make more accurate predictions. However, current approaches
require complete information about the recipients to be straight
embedded. Besides, the recent methods focus on deterministic
inference or simple frequency-based estimations of the probabil-
ities. In this work, we overcome this limitation by proposing
a novel approach to capture the uncertainty of the forecast
using conditional Normalizing Flows. This allows us to model
complex multimodal distributions and to compare various models
using negative log-likelihood (NLL). In addition, the new solution
allows for various interpretations of possible reader perception
thanks to the available sampling function. We validated our
method on three challenging, subjective NLP tasks, including
emotion recognition and hate speech. The comparative analysis
of generalized and personalized approaches revealed that our
personalized solutions significantly outperform the baseline and
provide more precise uncertainty estimates. The impact on the
text interpretability and uncertainty studies are presented as well.
The information brought by the developed methods makes it
possible to build hybrid models whose effectiveness surpasses
classic solutions. In addition, an analysis and visualization of the
probabilities of the given decisions for texts with high entropy of
annotations and annotators with mixed views were carried out.

Index Terms—artificial neural networks, natural language
processing, human profile modelling, probabilistic technique

I. INTRODUCTION

Human affective states, including emotions, strongly depend

on the individual, the stimulant eliciting them, and the as-

sociated context [1]. Therefore, the reasoning of a person’s

perception based on machine learning bears a significant

degree of uncertainty. It refers to the reaction to any content,

including text reading. We can say that disagreements in

human textual inferences are inherent [2]. Most solutions to

subjective problems in natural language processing (NLP),

like recognition of emotions, hate speech, sarcasm, sense

of humor, sentiment, and many others, rely on generalized

perspectives. They consider only text and its single generalized

interpretation. Then, the commonly used solution is to simplify

multiple distinct views, i.e., annotations provided by many

annotators using majority voting or other methods to achieve

†These authors contributed equally to this work.

a sole perception. Overall, we can identify two sources of

uncertainty: (1) humans, who are unsure and imprecise in their

annotations (this is a hidden factor), and (2) a community of

annotators. The latter refers to discrepancies between people

in understanding the problem, and perception of a given

text [3]–[5]. The standard measures for inter-rater agreement

are Krippendorff’s alpha [6] or Fleiss’ kappa [7]. However,

they provide only a single value characterizing the set of all

annotations for all texts. Yet another (3) source of uncertainty:

the trained model itself. It means that the model is not capable

of precisely learning about concepts (what is joy or hate
speech?) and relations from the available learning samples.

This leads to errors and proximate reasoning. Simultaneously,

emotions can be considered multidimensional objects, which

requires multi-task learning [8] and further complicates the

problem of uncertainty modeling. Most of the proposed ap-

proaches for subjective modeling in the NLP domain focus on

deterministic predictions. In this work, we propose to enrich

the family of emotional methods by introducing Emotional

Normalizing Flow – an entirely probabilistic framework that

utilizes conditional Normalizing Flows to model uncertainty.

We postulate to represent the considered tasks as multivariate

regression problems and represent the distribution of the

outputs with conditional flows. This approach allows us to

model complex multimodal distributions of multidimensional

outputs. The experiments and validation were carried out on

emotion detection (ten tasks) and hate speech (two tasks).

We examine various choices of flow models and compare

their performance with the mixture of Gaussians, showing

the superiority of Emotional Normalizing Flow compared to

the selected baseline. Moreover, we show that incorporating

personalization into our model leads to better distribution ad-

justment measured with negative log-likelihood (NLL) value.

To summarize, the contributions of this work are as follows:

• We introduce a novel approach for probabilistic modeling

in subjective NLP-based problems;

• We examine the impact of personalization on the quality

of the model and show that in most of the considered ex-

perimental cases, additional information about the reader

leads to better probability adjustment;

• We show that our approach outperforms the standard

baseline that utilizes a mixture of Gaussians;
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• We propose a hybrid approach utilizing Normalizing

Flows and personalization that outperform previous mod-

els.

II. RELATED WORK

Initial work on emotion recognition in the text was based

mainly on frequency analysis of words defined in lexicons

of emotions [9], [10]. These lexicons contained words with

assigned categories of basic emotions, e.g., joy, anger, sadness

[11], [12]. Emotions occurring most frequently at the lexical

level were then assigned to the entire text. With the develop-

ment of text classification methods based on machine learning,

datasets containing texts manually annotated with emotions

began to emerge [13]–[20]. Due to annotators’ subjective per-

ception of emotions, and thus low inter-annotator agreement,

it was common to assign emotion labels to text based on

majority voting [13], [18]. Based on such prepared data, text

classification models were trained. Initially, such models as

SVM [21], BiLSTM, and GRU [22] were used. Currently,

transformer-based models such as BERT perform best in the

task of emotion recognition [18], [23]. The aforementioned

approaches require data for which the inter-annotator agree-

ment is high. However, there are some data sets such as

Wiki-Detox [24], Sentimenti [16] or Measuring Hate Speech

[25], which contain an annotator identifier linked to their

affective annotation. They also include multiple annotations

for a given text from multiple annotators. For such data,

new personalized approaches have recently been developed, in

which the context of the annotator is taken into account in the

model learning process [26]–[36]. This makes it possible, for

example, to answer the question of what emotions a particular

text evokes for a particular user. Recent method proposals

also focus on neuro-symbolic approaches to explain decisions

made [37], usage of large-scale pre-trained language model

(PLM) for prompt-based classification tasks such as sentiment

analysis and emotion detection [38], using recently popular

large language models (LLMs) [39], or methods of complex

persona attribute extraction [40]. However, the methods men-

tioned above do not model the uncertainty associated with the

community’s subjective perception of emotions and the degree

of indecision of the annotators themselves.

In this paper, to model uncertainty described in the In-

troduction we adapt the concept of Normalizing Flows. The

best-known Normalizing Flow models such as NICE [41],

RealNVP [42], MAF [43], and CNF [44] were originally

used for density estimation and image generation tasks. These

models were further extended and used as components for

more sophisticated tasks or even for other domains of ap-

plications. In Computer Vision, there were proposed mod-

els such as RegFlow [45] for probabilistic future location

prediction, Flow Plugin Network [46], PluGeN [47], and

StyleFlow [48] models for conditional image generation. For

the tabular data, recently, TreeFlow [49] was proposed that

utilizes a combination of tree-based models with conditional

Normalizing Flows to estimate uncertainty for uni- and multi-

variate regression problems. In terms of Natural Language

Processing and Normalizing Flows, only Discrete Flow [50]

was proposed to model character-level datasets using Nor-

malizing Flows dedicated to the discrete data. To the best of

our knowledge, no probabilistic approach has been proposed

to model distributions of uncertainty in personalized natural

language processing, and our Emotional Normalizing Flow is

the first probabilistic model proposed for multi-task prediction

of personalized emotions.

III. BACKGROUND

a) Generalized and Personalized Approach to Subjective
NLP Problems.: In the classic approach to the task of text

classification or regression, we assume a training set of the

form D = {(ti,yi)}Ni=1, where ti ∈ T is the i-th text

document and yi is its annotation. However, many NLP tasks,

such as recognizing emotions in a text or detecting hate

speech, can be subjective because each person perceives these

phenomena. This leads to a situation when we can have more

than one annotation y for the same text t, as different people

may annotate the same texts differently. Therefore, a training

set is in the form of D = {(ti,pi,yi)}Ni=1, where yi is the

annotation given by person pi ∈ P for text ti ∈ T .

One approach to subjective tasks in NLP is the so-called

generalized. It assumes that the model predicts the result based

solely on the text and returns the same prediction for every

user. Generalized models usually consist of two parts: text
encoder (language model), which creates text representation
et and classifier or regressor (usually fully-connected layer)

that gives prediction ŷ. However, recent studies [28], [51], [52]

show that this approach should not be considered correct, as

adding information about the annotator significantly improves

model quality and yields better results. The approach that

combines information about the text and the human is so-

called personalized. Compared to the generalized, personal-

ized model adds another component called profile extractor,

that creates human representation ep. The comparison of

generalized and personalized approaches is shown in Fig 1.

There are few existing architectures [28], [51] utilizing this

fact. Still, all of them are deterministic, meaning none model

uncertainty as a direct optimization of negative log-likelihood.
b) Normalizing Flows.: Normalizing Flows [53] are a

class of generative models that enables estimation of the

uncertainty of prediction thanks to the access to log probability

function and thus enable direct optimization of negative log-

likelihood (NLL). The goal of the model is to transform

base distribution pU (u) (usually Gaussians with independent

components) to the complex distribution of the data pY (y)
using a series of K invertible functions that can be written

as u = fK ◦ · · · ◦ f1(y). For that purpose, Normalizing Flows

utilize the change-of-variable formula and then the NLL y is

given by

log pY (y) = log pU (u)−
K∑

k=1

log

∣∣∣∣det
∂fn

∂zk−1

∣∣∣∣ . (1)

To specify the exact Normalizing Flow model, we need to

define transformations f1, . . . , fK . Here, multiple models were
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(a) Generalized deterministic model.(a) Generalized deterministic model.

(b) Personalized deterministic model.

Fig. 1: Comparison of (a) generalized and (b) personalized

deterministic models. (a) consists of two parts: a text en-

coder (language model) that creates text embedding et and

a classifier or regressor (mostly fully-connected layer) that

provides prediction ŷ. This approach is not considered suitable

for subjective NLP tasks, like emotion recognition, because it

does not respect the individual perception of the text. Model

(b) fixes this problem by adding a profile extractor in the form

of user representation ep. It allows human individual charac-

teristics to be included in the inference process. Both models

are deterministic, giving us limited, spolight information about

subjective tasks.

proposed such as NICE [41], RealNVP [42], MAF [43] or

Continuous Normalizing Flows [44].

IV. OUR APPROACH

In this section, we introduce Emotional Normalizing Flow

- the probabilistic model for subjective uncertainty modeling

in the NLP domain. The general schema of the proposed

approach is provided in Fig. 2. The model is composed of

Profile extractor that is responsible for creating the repre-

sentation of the person, ep, and Text encoder that creates

embedding et directly from the input text. Both components

can be represented by various models (trainable and fixed),

and we elaborate on this further in this section.

The extracted vectors ep and et are further delivered to the

conditional flow represented by the complex transformation

function f(·). The role of the function is to transform multi-

variate regression outputs y to z that represents the variable in

the base space, assuming given vectors, ep and et. Formally,

we have z = f(y, ep, et), where f is invertible with respect to

(a) Generalized flow-based probabilistic model.

(b) Personalized flow-based probabilistic model.

Fig. 2: Comparison of (a) generalized and (b) personalized

flow-based probabilistic models. Model (a), as in the case

of generalized deterministic, uses only information about the

text. However, unlike it, it models the conditional probability

distribution pY (y|et) using Normalizing Flow. Model (b)

extends the concept of the personalized deterministic model in

a similar way to (a) but it exploits representations of both the

text et and user ep to model conditional probability distribution

pY (y|ep, et) for the subjective output predictions representing

emotions.

y, y = f−1(z, ep, et). Moreover, the complex transformation

f can be decomposed into a sequence of simple functions,

z = fK ◦ · · · ◦ f1(y, ep, et), where the K is number discrete

transformations. With such assumptions, the probability distri-

bution for y that represents the distribution over the regression

outputs can be calculated using the formula:

pY (y|ep, et) = pZ(z) ·
K∏

k=1

∣∣∣∣det
∂fk

∂zk−1

∣∣∣∣ , (2)

where z0, . . . , zK are intermediate steps after discrete trans-

formations, assuming z0 := y, and zK := z. pZ(z) is

the assumed base distribution for z with the known density
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function, usually represented by Gaussian. Consequently, we

have direct access to the density function for that conditional

distribution. Therefore we can calculate the likelihood function

for a set of input-output pairs to evaluate the quality of the

model. We can sample an infinite number of output values

assuming given inputs and interpret the results.

The proposed model can quickly adapt to the problems

without personalization, simply skipping ep conditioning in

the flow. Our approach is independent of the conditional

Normalizing Flow type, and we experimentally compare the

performances of the most popular models. We follow the

methodology of incorporating conditional components de-

scribed in [46].

a) Profile extractor.: Vector ep contains information

about the user specific to the personalization architecture

used. This can include information such as the deviation of

responses from the majority voice, metadata about the user,

user identifier [28], the correlation of the text’s context with

historical evaluations, or other features unique to the recipient

of the text. It also can be randomly initialized and tuned during

the learning process by backpropagation [51].

b) Text encoder.: In the case of et vector, text represen-

tation is implemented using Transfomer language models. An

attentional weight is assigned for a given text input, divided

into individual tokens. The assigned values are then used to

calculate the weighted sum of the resulting vectors [54]. It

is possible to fine-tune the language model using the loss

function of the final model.

c) Training the model.: To trained Emotional Normaliz-

ing Flow we use the dataset D = {(tn, pn,yn)}Nn=1, composed

of tn textual input, pn features of the person, and correspond-

ing subjective annotation yn given by the person pn for text

tn. We train our model directly by optimizing the negative

log-likelihood function:

L = −
N∑

n=1

log pY (yn|en,p, en,t), (3)

where en,p is a vector, that represents profile of the person

pn, and en,t is an embedding of the text tn. The model

can be trained in a two-stage mode or end-to-end paradigm

depending on the form of Profile extractor and Text encoder.

In the first case, the embeddings ep and et are extracted in

the first stage, and parameters of the flow are trained while

optimizing L. Alternatively, suppose the Profile extractor or

Text encoder are represented by differentiable architectures.

In that case, the entire system can be optimized end-to-end,

directly minimizing the negative log-likelihood function.

V. EXPERIMENTS

In this subsection, we evaluate our approach on a set

of challenging datasets, investigating the impact of adding

contextual information about the person in the model. More-

over, we compare flow-based probabilistic models to a simple

Gaussian Mixture Model. Then, we compare our solution

to the deterministic models using sampling from flow and

discretization. Finally, we mix deterministic and probabilistic

approaches to create a hybrid model.

A. Datasets

a) Wikipedia-Detox.: The Wikipedia Detox project has

created a crowd-sourced dataset that contains one million

annotations covering 100,000 discussions of page edits on

Wikipedia [24]. These were often filled with toxic statements,

verbal aggression, and even personal attacks. Each comment

was annotated by about ten annotators provided by the Crowd-

flower service.

The collection containing toxic statements consists of

160,000 texts. It includes a binary determination of toxicity

(where: 0 = non-toxic, 1 = toxic), as well as a rating from

-2 to 2 (where: 2 = very healthy, 0 = neutral, and -2 = very

toxic).

Sets for personal attacks and verbal aggression consist of

100,000 of the same comments. In addition to the binary marks

for aggression (0 = neutral or friendly comment, 1 = aggressive

or attacking), aggression is put on a scale analogous to toxicity

from -2 to 2 (where: 2 = very friendly, 0 = neutral, and -2

= very aggressive). Personal attacks are divided into types:

quoting, recipient, third party, or another type of attack. In

addition to texts shared between these collections, the same

applies to annotators. Thus, we can use knowledge from one

collection to benefit from it in another or a collective approach.

Those willing to participate in the study also completed

questionnaires so that we have demographic information about

them available.

b) Emotion Simple.: This collection consists of 100 texts

marked on 10 scales by 5,365 annotators [55]. Texts are

opinions posted on websites. This gives 53.65 annotations per

text and 1.69 markings from a single user. The texts were

rated for eight basic emotions (sadness, anticipation, joy, fear,

surprise, disgust, trust, and anger) and emotional arousal on a

scale from 0 to 4 for each dimension. In addition, the tenth

aspect rated is the valence expressed on a scale from -3 to 3

(where -3 = negative, 0 = neutral, and 3 = positive). In the

set of individuals with two marks, those with three or more

annotations also appear.

c) Emotion Meanings.: In [56], a huge collection con-

taining 6,000 assessed word collocations was prepared and

published. It contains dimensions and scales analogous to the

Emotion Simple collection – the basic emotions from Robert

Plutchik’s Wheel of Emotions [57].

The scale of the collection makes it one of the most inter-

esting and, simultaneously, the most difficult for personalizing

emotion detection. It has 303,143 annotations from 16,101

people who participated in the study. Each collocation has been

evaluated 50.67 times, and a single annotator has an average

of 18.83 annotations.

The difficulty in working with these data is also because

these are not full-fledged textual statements containing context

but just two words. An example item from the collection:

"colorful beads". Annotator data include information such as
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gender, age, education, size of residence, relationship status,

income, or political views.

B. Setups

The dataset was divided into training, validation, and testing

splits. Users and texts were not mixed between sets to bring the

evaluation as close to the real-world scenario. Each experiment

consisted of 10-fold cross-validation, and obtained results were

averaged. Statistical significance tests were performed: t-test

with Bonferroni correction to address the problem of multiple

comparisons. In the tables within the rows, comparisons were

made between models without and with personalization. Bold

indicates the best result, and underline indicates the absence

of statistically significant differences for each dataset. Within

the “Type“ column, the best probabilistic model type or no

significant difference between the two was similarly marked

for each dataset separately.

a) Baselines.: We have three reference points. To check

the impact of personalization, we compared personalized

models with a baseline that uses only textual information

(TXT-Baseline); it is a generalized approach. To investigate

the impact of normalizing flows, we compared them with a

Gaussian Mixture Model to have a reference point in the

form of another, less complex probabilistic method. Finally,

we compared our method with deterministic approaches.

b) Models for conditional normalizing flows.: In our

experimental evaluation, we consider Emotional Normalizing

Flow with various types of conditional normalizing flows.

For single-dimensional datasets: Wikipedia Detox: Toxicity,

Wikipedia Detox: Aggression and Wikipedia Detox: Attack,

we used MAF (maf) and CNF (cnf). For multi-dimensional

Emotions Meanings and Emotions Simple, we used two extra

flows: RealNVP (real_nvp) and NICE (nice). We compared

the results against the baseline that uses mixtures of Gaussians

to model the probability (gmm).

c) Models for personalization.: We investigate three

approaches to respect the personalization context: OneHot,

HuBi-Formula, and HuBi-Medium [51]. They are confronted

with TXT-Baseline (generalized, non-personalized) that does

not contain any information about the annotator. We exploit

LaBSE [58] as a language model in every experiment.

C. Experimental scenarios

a) Experiment 1 - Comparison of generalized and per-
sonalized solutions in the probabilistic approach.: The first

approach verifies the performance of Emotional Normalizing

Flow with fixed hyperparameters on multiple data sets and

tasks: Wikipedia Detox: Toxicity, Wikipedia Detox: Aggression,

Wikipedia Detox: Attack, Emotion Meanings and Emotion
Simple. We also verified the ability of the proposed Emotional

Normalizing Flow to transfer knowledge between thematically

similar multidimensional text labels. For this purpose, the

Wikipedia Detox: Aggression and Wikipedia Detox: Attack
datasets were joined, as they contain annotations for the

same texts performed by the same annotators. As a result,

we obtained a dataset with multi-dimensional labels. This

experiment aimed to examine the effect of personalization

models on the prediction of probability distributions, thus

verifying whether the additional information provided to the

model reduces its uncertainty and comparing Normalizing

Flows to Gaussian Mixture Model.

b) Experiment 2 - Investigating the effect of hyperparam-
eters selected for personalization and Emotional Normalizing
Flow methods on the most difficult dataset.: The second

approach was to verify the maximum possible reduction of

model uncertainty by tuning the model hyperparameters to

a given set and checking which normalizing-flow model ob-

tained the best results. Due to limited resources, we decided

to perform this experiment using only Emotion Meanings
dataset. The parameters that we tuned were: the number of

hidden features, number of layers, number of blocks per layer,

dropout probability, batch normalization within layers, batch

normalization between layers, learning rate, the size of hidden

layers used to prepare user embeddings, and the size of the

output of these embeddings.

c) Experiment 3 - Comparison of probabilistic and de-
terministic approaches.: To compare with classical methods

[8], which are deterministic, it was necessary to prepare

conversions of the Emotional Normalizing Flow output to

the form of exact values. Included in the body of the paper

is the application of two best normalizing flows (RealNVP

and CNF) for multidimensional datasets (Aggression & Attack
[classification task] and Emotion Simple [regression task]).

For the first type of task, each text or text-user pair was

sampled using an iterative method. In the preparation step, we

increased the number of samples in the test part of the dataset

so that the value from 0 to 1 with a step of 0.1 for the class

was tested as a possible context. Iterations were done twice for

values of 0 and 1 in the opposite class. Next, an exponential

was applied to the 44 probabilities of the resulting sample (22

per class for each text). Within the values for the opposite

sampling, (e.g., [0.5, 0] and [0.5, 1]) of a given dimension

were summed, and then for each stopper (0.0, 0.1, ..., 1.0)

divided by the sum of all values for the dimension. If the

probability mass prevailed on the side from 0.0 to 0.5, it was

considered that the class was not assigned and vice versa for

the other part of the axis.

It was impossible for a 10-dimensional set for the regression

task to sample each possible dimension in all values separately

because of the number of possible combinations. Each item

from the test subset was replicated 100 times containing

random real values from 0 to 1 in each class. Majority voting

was then conducted to determine the most likely response for

the scale of each dimension. In the collection, each dimension

had a value analogous to the slider setting during annotation.

For this reason, the task was treated as an ordinary regression,

and the resulting values were rounded to the nearest possible

position. This assumption was used for both values from the

deterministic and probabilistic approaches.

d) Experiment 4 - Hybrid approach (utilizing knowledge
from the text and uncertainty modeling).: The combined

approach, hereafter referred to as hybrid, was done in two
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steps. In the first, the learned Emotional Normalizing Flow

models were sampled in the same way as in Experiment 3,

but for all the texts in the collection. Then, the network input

was extended to the deterministic model with an additional

feature. A vector containing the resulting probabilities for each

text was entered along with its embeddings and, in the case of

approaches with personalization, the user profile. This vector

contained all the values from the sampling, and no additional

mathematical operations were performed on it.

D. Results

a) Results of Experiment 1.: The first experiment proved

that adding personalization reduces the uncertainty of proba-

bilistic models, Tab. I. For Wikipedia Detox datasets (Aggres-
sion, Attack and Toxicity), all personalized models received

significantly lower negative log-likelihood values compared

to the non-personalized TXT-Baseline. For all three tasks,

the best architecture was HuBi-Medium combined with CNF.

For Aggression & Attack dataset, personalization improved

most cases’ results. The best results were obtained by OneHot

combined with RealNVP and HuBi-Formula combined with

CNF. In the case of Emotion Simple and Emotion Meaning,

personalization also reduced model uncertainty in most of the

cases. For both datasets, the best results were obtained by

the HuBi-Medium model combined with RealNVP. It is worth

noting that compared to Gaussian Mixture Model, Normalizing

Flows always obtain lower negative log-likelihood values. It

suggests that target variables, i.e., emotions, have complex

distributions, and using a simple probabilistic approach is not

enough.

b) Results of Experiment 2.: In the second experiment,

we carried out hyperparameter tuning on the most challenging

dataset: Emotion Meanings, Tab. II. All possible combinations

of hyperparameters were considered when performing the grid

search. The results seem to confirm earlier speculations about

MAF’s better ability to deal with multidimensional problems

compared to other approaches. Moreover, none of the variants

indicated the benefit of using text alone as input.

c) Results of Experiment 3.: In the third experiment,

we compared results obtained by deterministic models and

Emotional Normalizing Flow, Tab. III. It was carried out

on two datasets: combined Wikipedia Detox: Aggression &
Attack and Emotions Simple. We also decided to use only two

Normalizing Flow Models that performed the best on both of

these datasets: RealNVP and CNF.

In the case of Aggression & Attack dataset, the results

obtained by deterministic models were better for every ar-

chitecture, including the non-personalized one. In the case of

Emotion Simple dataset, the results obtained by probabilistic

models significantly outperformed deterministic models. The

best model was a combination of HuBi-Medium and CNF.

This result seems to confirm that the probabilistic approach is

especially effective on complex multi-dimensional tasks.

d) Results of Experiment 4.: In the fourth experiment,

we mixed the deterministic approach with the probabilistic, to

create a hybrid model, Tab. IV. In both Aggression & Attack

Dataset Type TXT-Baseline OneHot HuBi-Formula HuBi-Medium

Toxicity maf 0.0702 -0.0197 -0.0947 0.0053
cnf 0.1231 -0.0707 -0.1202 -0.1378
gmm 0.6422 0.6164 0.5829 0.5072

Aggression maf 0.1705 0.1695 0.0526 0.0859
cnf 0.1685 0.0978 0.0180 -0.0431
gmm 0.8948 0.7783 0.7841 0.7446

Attack maf 0.1669 0.1180 -0.0229 -0.0250
cnf 0.1474 0.0811 -0.0427 -0.0950
gmm 0.7512 0.7318 0.7105 0.6911

Aggression & Attack maf -1.3788 N/A -0.3966 -0.3834
nice -0.8678 -1.1281 -1.0524 -1.0914
real_nvp -3.3482 -3.6181 -3.0235 -1.7208
cnf -3.5113 -2.7339 -3.7002 -2.1357
gmm 3.1729 2.4028 2.5673 2.6858

Emotion Meanings maf 0.5337 -0.0135 0.8525 0.1936
nice -1.9099 -1.8707 -2.0283 -1.4792
real_nvp -5.4775 -2.9377 -5.5189 -5.6377
cnf -3.7186 -1.9640 -3.4632 -4.8458
gmm 5.9559 5.4858 4.8034 4.4719

Emotion Simple maf 1.9130 2.6398 2.6393 1.9314
nice 2.4254 1.8163 2.3502 1.9613
real_nvp 2.5583 1.7845 2.3726 1.4355
cnf 2.1220 1.8197 2.3347 1.9702
gmm 4.2706 3.7496 4.2312 4.0910

TABLE I: Experiment 1 - negative log-likelihood values for

all datasets, without hyperparameter tuning.

and Emotion Simple tasks, the results obtained by the hybrid

approach outperformed previous methods by a large margin.

For Aggression & Attack dataset, the best model turned out

to be HuBi-Medium with CNF. For Emotion Simple dataset,

HuBi-Medium with both RealNVP and CNF performed com-

parably well. The results of this experiment prove, that adding

information about the model uncertainty makes big difference

in the inference process, and helps to predict better for difficult

and subjective tasks.

Dataset Type TXT-Baseline OneHot HuBi-Formula HuBi-Medium

Emotion Meanings maf -11.5380 -14.0785 -10.6476 -12.1934
nice 4.2167 -2.0243 -1.0978 -1.9208
real_nvp -2.3509 -4.5813 -5.2833 -7.0285
cnf -1.9623 -3.9381 -5.2247 -4.9381
gmm 12.6564 9.6047 7.8908 8.4545

TABLE II: Experiment 2 - negative log-likelihood values for

Emotion Meanings dataset, with hyperparameter tuning.

VI. CONCLUSIONS

In this paper, we proposed a novel Emotional Normalizing

Flow approach to personalized NLP that opens up new per-

spectives on predicting reader behavior in a non-deterministic

way. From the perspective of psychology and the variability

of emotion sensation over time, the problem of emotion

recognition is one of the most difficult and subjective tasks

facing NLP. People do not perceive their emotions as zero-

one, and most of the attempts so far classified their feelings

in this way. The presented probabilistic approach based on

normalizing flows provides more complex information about

the uncertainty and diversity of possible emotional states.

A comparative analysis of models for emotion recognition

without and with personalization indicated that new methods

are also effectively applicable in a non-deterministic setup. The

generalized, non-personalized solution generates a completely

different concentration of probability mass, directed toward a
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Dataset Method TXT-Baseline OneHot HuBi-Formula HuBi-Medium

Aggression & Attack deterministic 0.5874 0.5954 0.7354 0.7847
[Macro F-1] discrete(real_nvp) 0.4829 0.4682 0.5860 0.6788

discrete(cnf) 0.5189 0.4738 0.6397 0.7374

Emotion Simple deterministic 0.3936 0.5403 0.5574 0.5822
[R2] discrete(real_nvp) 0.4472 0.6535 0.6582 0.6835

discrete(cnf) 0.4428 0.6274 0.6685 0.7005

TABLE III: Experiment 3 - Comparison of classification and

regression using the classical deterministic method and the

result of sampling Emotional Normalizing Flow. Macro F-

1 score for Aggression & Attack and R-squared for Emotion
Simple datasets.

Dataset Method TXT-Baseline OneHot HuBi-Formula HuBi-Medium

Aggression & Attack deterministic 0.5874 0.5954 0.7354 0.7847
[Macro F-1] hybrid(real_nvp) 0.8479 0.8254 0.8233 0.8743

hybrid(cnf) 0.8693 0.9052 0.8400 0.9553

Emotion Simple deterministic 0.3936 0.5403 0.5574 0.5822
[R2] hybrid(real_nvp) 0.4722 0.7149 0.7237 0.7376

hybrid(cnf) 0.4867 0.6899 0.69223 0.7388

TABLE IV: Experiment 4 - Comparison of the classical

deterministic approach and hybrid models, which in addition

use probabilistic knowledge. Macro F-1 score for Aggression
& Attack and R-squared for Emotion Simple datasets.

quantitative approach. Personalization can shift the view of

the problem in a contextual way by dedicating reasoning to a

single user. Finally, we showed that adding information about

model uncertainty significantly improves the ability to predict

complex and subjective behaviors such as recognizing hate

speech or emotions in a text. The hybrid model we created

significantly outperformed the previous methods, becoming a

new state-of-the-art on two very challenging tasks. Our future

work will focus on applications of our approach to some other

tasks such as active or reinforcement learning.

LIMITATIONS

One important issue related to the nature of normalizing

flows is their ability to convert probabilities to disambiguate

uncertain answers. At the moment, there are no reference

datasets available that contain text and annotator information

simultaneously with multiple markings of the same text by the

same person. This is due to cost constraints in preparing such

data. However, we have conducted experiments on datasets

with different characteristics in which (1) one person marked

several hundred texts [Wikipedia Detox Datasets] and (2)

one text was evaluated dozens of times by different people

[Emotions Simple and Emotion Meanings datasets]. In order

to address the problem mentioned in the introduction, one text

should have N annotations from the same person, e.g., a few

days apart. If we gain access to or prepare such a dataset, we

would be happy to conduct in-depth studies on it.

Due to the language of one of the datasets being different

from English, a multilingual model was used to embed the

text. This decision was made in order to allow for direct

comparisons and cross-referencing. This would have added an

unnecessary layer to the already relatively complex problem

that was addressed. It is possible to experiment with other

language models as well using the source codes provided†.
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J. Kocoń, and P. Kazienko, “What if ground truth is subjective? per-
sonalized deep neural hate speech detection,” in Proceedings of the 1st
Workshop on Perspectivist Approaches to NLP@ LREC2022, pp. 37–45,
2022.

[33] J. Bielaniewicz, K. Kanclerz, P. Miłkowski, M. Gruza, K. Karanowski,
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APPENDIX

A. Personalization architectures

Architectures for personalization have been modified to

return a probability distribution instead of the probability of

a class. Input features are passed to the normalizing flow as

context. We are dealing with four architectures:

• Baseline (Fig. 3) - the input is just an embedding of text

• OneHot (Fig. 4) - the user represented as a one-hot vector

is concatenated to the text embedding

• HuBi-Formula (Fig. 5) - the deviation of the user’s

response is taken as its representative feature

• HuBi-Medium (Fig. 6) - annotation-based learned user

embedding combined with text embeddings provides the

context

B. Implementation details

Experiments were performed using the code provided in the

“Anonymous”.

Grid search for hyperparameters of Normalizing Flows in

experiment 2 was performed with the values specified in

Tab. V and Tab. VI.

Flow

0 1 0 0 0 0

Text

Text embedding 
(frozen) 

Prediction

Fig. 3: TXT-Baseline architecture utilizing normalizing flows.

Flow

OneHot 

Text

0 0 1 0 0 0

Prediction

Text embedding 
(frozen) 

0 1 0 0 0 0

C

Concatenation

Fig. 4: OneHot architecture utilizing normalizing flows.

For all experiment purposes, we used a machine with AMD

Ryzen Threadripper PRO 3955WX 16-Core Processor CPU,

2 x NVIDIA GeForce RTX 3090 GPUs, and 256 GB RAM.

C. Visualization of probabilities

For the combined set of Aggression & Attack, visualizations

of the waveform of the probability function were prepared as

a result of Experiment 3. described in the publication, are

presented in Fig. 7 and Fig. 8.
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Fig. 5: HuBi-Formula architecture utilizing normalizing flows.
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Flow
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Element-wise
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Prediction

Text embedding 
(frozen) 

Fig. 6: HuBi-Medium architecture utilizing normalizing flows.

Hyperparameter Values
hidden features [2, 4, 6, 8]
num layers [1, 2, 3, 4, 5]
num. blocks per layer [1, 2, 3, 4]
dropout probability [0.0, 0.1, 0.2, 0.4]
batch norm within layers [True, False]
batch norm between layers [True, False]

TABLE V: Hyperparameters for Normalizing Flows and their

possible values during experiment 2. Note that for MAF, the

dropout probability hyperparameter was not used at all.

Hyperparameter Values for TXT-Baseline & OneHot & HuBi-Formula Values for HuBi-Medium
embedding dim. 50 50
hidden dim. 50 [128, 256, 512, 786]
output dim. - [128, 256, 512, 768]
learning rate [1e-5, 1e-4] [1e-5, 1e-4]

TABLE VI: Hyperparameters for training and architectures,

and their possible values during experiment 2.

(a) (b)

(c) (d)

Fig. 7: Visualizations of the waveform of the probability

function for RealNVP with different architectures and for

Attack and Aggression.

(a) (b)

(c) (d)

Fig. 8: Visualizations of the waveform of the probability

function for CNF with different architectures and for Attack

and Aggression.
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