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Abstract—Negation is a linguistic phenomenon that usually
occurs in a text for denial or refute of some occasion. Detection
of such negative assertions is an essential sub-task in various
applications of information extraction and data mining. In this
paper, we present a deep multitask learning (MTL) framework
to enhance the performance of Negation Scope detection using
part-of-speech (POS) tagging as an auxiliary task. We show how
the relationship between these two tasks, which do not seem
to be easily linked from a linguistic point of view, is mutually
beneficial.

Index Terms—sentiment analysis, multitask learning, negation
scope detection, pos-tagging, deep learning

I. INTRODUCTION

In recent years, sentiment analysis has become increasingly
popular for processing social media data on online communi-
ties [1], social networks [2], and microblogging platforms [3].
Sentiment analysis is a branch of affective computing research
that aims to mine opinions from text (but sometimes also
images [4] and videos [5]). Most of the literature is on English
language but recently an increasing number of works are tack-
ling the multilinguality issue [6], especially in booming online
languages such as Arabic [7], Chinese [8], and Spanish [9].
Besides traditional domains like business intelligence [10] and
recommendation systems [11], sentiment analysis applications
also include many other areas like financial forecasting [12],
healthcare [13], cyber-harassment prevention [14], political
forecasting [15], and dialogue systems [16].

Negation handling is one of the most important sub-tasks of
sentiment analysis as negation can flip the polarity of clauses
and even entire sentences. The occurrence of negation cues
like not, don’t or -less etc, often affect the true meaning of
the sentence. Although the contextual polarity of a sentence is
affected by the presence of a negation cue, it is not necessary
that the sentiments conveyed by all the tokens get reversed.
This makes it quite essential to determine the scope of these
negation cues [17]. While detecting the presence of a negation
cue in domain-specific texts could be done with the help
of simple keyword matching approaches [18], the problem
of identifying the scope of a negation cue is significantly
challenging as it may not be limited to a few subsequent words
in the sentence. For example, in the sentence, John had never
said as much before, the negation cue: never, affects both the
events, a) saying did not take place, b) John was not the one
who said.

Regardless of the approach used, the syntactic structure
of the sentence plays a significant role in negation scope
detection. This is because the position of negation cue in
the syntactical tree along with the projection of its parent are
strong indicators of the patterns the scope is likely to span [19].
Similarly, in the task of POS tagging, the syntactical structure
is again the key factor as the tokens with same tags display
similar syntactic behavior and morphology.

This correlating nature between the two tasks motivates us
to leverage the idea of multitask learning i.e., training models
that simultaneously learn to solve both tasks by exploiting their
commonalities. This can result in improved learning efficiency
for the task-specific portions and indeed gain better accuracies.

We empirically show that this approach outperforms the
results obtained for negation scope detection with a separate
single-task learning model.

II. RELATED WORK

Sentiment analysis techniques can be broadly categorized
into symbolic and sub-symbolic approaches: the former in-
clude the use of lexicons [20], ontologies [21], and semantic
networks [22] to encode the polarity associated with words and
multiword expressions; the latter consist of supervised [23],
semi-supervised [24] and unsupervised [25] machine learning
techniques that perform sentiment classification based on word
co-occurrence frequencies. Among these, the most popular are
algorithms based on belief networks [26], randomized net-
works [27], generative adversarial networks [28], and capsule
networks [29]. There are also some hybrid frameworks that
leverage both symbolic and sub-symbolic approaches [30].

While most works approach it as a simple categorization
problem, sentiment analysis is actually a complex research
problem that requires tackling many NLP tasks [31] tasks
such as microtext normalization [32], to decode informal
text, subjectivity detection [33], to filter out neutral content,
anaphora resolution [34], to link pronouns with the entities
of a sentence, personality recognition [35], for distinguishing
between different personality types of the users, and negation
handling. Some early works in negation handling systems
like [36], use a simple rule-based approach where the tokens
between the negation cue and the first punctuation are marked
as the scope. A more robust rule-based approach that uses
information from parse trees is developed in [37].
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With the advent of new annotated corpora like the Bioscope
corpus [38], various advanced computational approaches have
proved to achieve improvements in negation scope modelling.
Based on the guidelines provided for the scope annotation
in the bioscope corpus, [39] hand-crafted a set of heuristic
grammatical rules to define the scope of each cue. Considering
it as a classification problem, Morante et al. [40] use an
ensemble-based machine learning method combining Support
Vector Machines (SVMs) and Conditional Random Fields
(CRFs). [41] uses an advanced CRF-based model with a set of
syntactic and structural features to solve the scope detection
task in *SEM shared task 2012 [42].

More recently, neural network-based approaches have also
been adopted for negation scope detection. Lazib et al. [43],
considering it as a sequence labeling problem, proposed var-
ious Recurrent Neural Network (RNN) models to detect the
scope of a negation cue automatically. Similarly, Fancellu et
al. [19] use Bi-LSTM (Bidirectional Long Short-Term Mem-
ory) networks to solve the task and achieve outperforming
results on the *SEM shared task 2012 [42]. Their approach
includes the use of additional embedding vectors of POS tag
information for improved modelling of the input sentences.
The POS-related information leads to better performances
in most of their model variants, helping us to assess the
correlation between the two tasks. Qian et al. [44] proposed a
Convolutional Neural network (CNN) with weighted average
pooling to extract meaningful features from the syntactic paths
between the cues and the potential tokens to address the
problem of negation scope detection.

Various tasks in the NLP field are highly interrelated,
making it natural to apply multitask learning. For exam-
ple, [45] uses a cascading architecture to share the learnt
contextual features of a POS tagging classifier to train the
Semantic Role Labelling (SRL) model. Alternatively, [46] use
a joint training approach and show improvements in results
for POS tagging and noun-phrase chunking tasks. More such
advanced joint training approaches have been used for other
pre-processing tasks by [47]–[49]. [50] use a multitask, neural
tensor fusion-based learning approach to model the synergy
between sentiment and sarcasm classification tasks. Motivated
by the success of neural networks models in solving nu-
merous Natural Language Processing (NLP) tasks, especially
Transformers [51], we propose in this paper a deep multitask
learning framework that combines transformer encoders along
with a Bi-LSTM network and CRF layers to solve the negation
scope detection task with POS tagging as an auxiliary task.

III. METHODOLOGY

The syntactic nature of sentences plays a significant role
while solving both negation scope detection and POS tagging
tasks [19]. To leverage the commonalities, we use a multitask
learning approach, where a single deep learning model is
used to perform more than one task (in our case, negation
scope detection and POS tagging). We specifically focus on
improving the accuracy of negation scope detection by using
POS tagging as an auxiliary task. Fig 1 shows our multitask

learning architecture. The following sections describe the key
components of our architecture:

A. Input Representation

We use trainable word embedding vectors (dimensions,
De = 256) to represent each token in the input sequence.
These variable-length input sequences are initially padded to
a fixed length (L = 85, length of the longest sentence in the
dataset) using null vectors. The padding does not contribute
to the gradient during the training step in any component of
the architecture.

B. Shared LSTM

The embedded input sequences are further passed through
an LSTM network, i.e, a recurrent neural network capa-
ble of capturing long-term dependencies in the sequential
inputs. We use Bi-LSTM network (Dlstm = 128) that
constructs context-rich sentence-level token representations
(H∗ = [h∗1, h∗2..., h∗L], with h∗i ∈ R2Dlstm ), taking into
account the input sequence bi-directionally (* representing
both backward and forward). The computation of this hidden
layer at time t and the word-embedding vector x can be
represented as following:

it = sigmoid(W i
xx+W i

hht−1 + bi) (1)

ft = sigmoid(W f
x x+W f

h ht−1 + bf ) (2)

ot = sigmoid(W o
xx+W o

hht−1 + bo) (3)

ct = ct−1 · ft + it · tanh(W c
xx+W c

hht−1 + bc) (4)

hback,forw = ot · tanh(ct) (5)

where Ws are the weight matrix and bs are the bias
parameters, ht−1 is the hidden layer state at time = t − 1,
it, ft, ot are the input, forget, and output gates at time = t
of the network. ct represents the cell activation vectors. The
output sequence (ylstm = [y1, y2..., yL], with yi ∈ RDt ),
of size Dt = 256, is further calculated using the weight
(Wlstm ∈ RDt×2∗Dlstm ) and bias parameters (blstm ∈ RDt ).
In our approach, the Shared LSTM is expected to learn the
correlated features between the two tasks, i.e, negation scope
detection and POS tagging.

ylstm = WlstmConcat(Hback, Hforw) + blstm (6)

180



Fig. 1. Our multitask learning architecture along with input-output example.

C. Transformer Encoder

The context-rich sentence-level token representations are
further fed to individual transformer encoder layers to map
them to abstract representations that hold task-specific learned
information for each token in the input sequence. Transformer
encoder is a stack of multiple encoder blocks (nlayers = 4)
that map the input sequence to a concrete and contextualized
encoding sequence. Multi-headed attention networks (nh =
10, equation 7) in the transformer weigh the relevance of each
token in the sequence and prioritize them to produce more
meaningful outputs. We use positional-encodings in order to
inject the positional information in the sequence. Mathematical
formulation:

Attention(Q,K, V ) = softmax(
QKT√

dk
)V (7)

MultiHeadAttn(Q,K, V ) = Concat(A1, ..., Anh
)WO,

whereAi = Attention(QWQ
i ,KWK

i , V WV
i )

Each input vector in ylstm is used with three different
ways in the attention mechanism: the Query (Q ∈ Rdk ), the
Key (K ∈ Rdk ) and the Value (V ∈ Rdv ). These vectors
are further projected nh times to allow the model to jointly
use information from different representation by concatenating
the results. The parameters include WQ

i ∈ RDt×dk ,WK
i ∈

RDt×dk ,WV
i ∈ RDt×dv and WO ∈ Rnhdv×Dt . The output

of the attention network (X) is further passed through a fully
connected feed-forward network (FFN ) with two position-
wise linear transformations and a ReLu activation.

FFN(X) = ReLu(XWf1 + bf1)Wf2 + bf2

where,Wf1 ∈ RDt×df ,Wf2 ∈ R×Dt ,

bf1 ∈ Rdf , andbf2 ∈ RDt .

We use the above encoder setup for both negation scope
detection (Hneg = FFN1(X)) and POS tagging (Hpos =

FFN2(X)). Along with the standard transformers, we also ex-
periment with a lightweight alternative, Star Transformer [52],
for reducing the architecture complexity.

D. Neural Tensor Network Layer

We use a Neural Tensor Network (NTN) layer (Dntn =
256) to fuse and model the relationships between the encoded
representations of the tasks in our MTL framework. Neural
Tensor layers are extended versions of the standard linear
layer with a bi-linear tensor layer, relating the encoded vectors
across multiple dimensions to extract information relevant to
both the vectors.

yntn = tanh(HnegW
[1:Dntn]
n HT

pos

+ Concat(Hneg, Hpos)Wv + bn) (8)

where, Wn ∈ RDntn×Dt×Dt ,Wv ∈ R2Dt×Dntn , bn, yntn ∈
RDntn . We use individual Linear layers (simple feed-forward
networks with Dl = 256) to further map the fused representa-
tions to the desired number of features for both the individual
tasks.

sneg = W1yntn + b1 (9)

spos = W2yntn + b2 (10)

where, W1,W2 ∈ RDl×Dntn and b1, b2 ∈ RDl are trainable
parameters.

E. Conditional Random Field (CRF)

Since both negation scope detection and POS tagging are
sequence labelling tasks, we use task-specific CRF layers to
model the dependency between each token and the entire
sentence representation. Conditional Random Field is a prob-
abilistic framework for labeling structured, sequential data.
Unlike the Softmax layer, often used as an activation in the
output of the neural network models for classification, CRFs
do not assume an independent relationship between the token’s
outcome probability.
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Thus, defining a conditional probability distribution over
the label sequences provides a significant improvement in the
sequence labelling task [53]. In our framework, two individual
CRF layers, in the end, classify each token in the input
sequence with the most relevant POS tag as well as indicate
whether the token lies in the scope of the negation cue. The
probability of final output y∗ is calculated using:

P (y∗|s∗) =
∑L

t=1 e
f(y∗t−1,y∗t,s∗)∑Y (s∗)

y′
∑L

t=1 e
f(y
′
t−1,y

′
t,s∗)

(11)

where * is for neg and pos. Here, f(y∗t−1, y∗t, s∗) computes
the transition score for yt. Viterbi algorithm is used to optimize
finding the maximum P (y∗|s∗) probable sequence [54].

F. Training

We use a combination of the negative log-likehoods ob-
tained from both the task-specific CRF layers as the loss
function for training. We use Adam [55], a method for
stochastic optimization of parameters along with an adaptive
learning rate scheduler to train the architecture.

IV. EXPERIMENTS

1) Datasets: We use the *SEM Shared Task 2012 dataset
(Conan Doyle stories) [42] which consists of 885 training and
264 testing samples, each annotated with negation cues and
their scope, as well as the POS tag information. The cues are
the words that express negation, and the scope is the part of
a sentence that is affected by the presence of such negation
cues.

One variant of our model includes pre-training some layers
of the model on a specific POS tagging dataset. We use the
English Web Treebank [56], a corpus of 16, 662 sentences
annotated using the Universal Dependencies annotation for this
purpose.

2) Model Variants: We evaluate the following variants of
our model.

A. Stardard Single-Task Learning

Here, we train our model by removing the shared layers
between both the task, i.e., Shared LSTM and NTN Fusion
layer to perform individual single-task learning over both the
tasks.

B. Simple Multitask Learning with Shared LSTM

In this setting, both the tasks share the Shared LSTM layer
(Section III-B) while minimizing the loss function.

C. Multitask Learning with NTN Fusion

Here, we train our model on the complete MTL architecture
that we propose in Section III including both the important
shared layers, Shared LSTM (Section III-B) and NTN Fusion
layer (Section III-D).

D. Multitask Learning with separate pre-training of POS-
related layers

In this variant, we first pre-train the POS tagging task-
specific layers separately on the universal dataset (Section
IV-1, Nepochs = 60, lr = 1e− 2). We then train our complete
MTL architecture by initializing the POS-specific layers with
the pre-trained weights.

For all the experiments, we perform hyperparameter tuning
to achieve the best loss convergence results.

V. RESULTS AND DISCUSSION

Table I shows the results of negation scope detection on the
Conan-Doyle dataset using different approaches used in the
previous works. [57] uses a rule-based approach whereas, [58]
uses a CRF-based sequence labelling approach to determine
the scope of negation. However, to enhance the performance,
more advanced computational approaches have been used by
the community. [59] uses a support vector machine model
along with a few heuristics to get improved results. [19]
instead uses a recurrent neural network model to achieve
outperforming results on the negation scope detection task.

Table II further shows the results on different variants of our
MTL architecture. We perform an ablation study to understand
and compare the essential components of our multitask learn-
ing framework. With the Standard Single-Task Leaning variant
as a baseline, we see that the Simple MTL with Shared LSTM
model performed slightly better in the negation scope detection
task. This shows that the Shared LSTM plays a reasonable role
in understanding the commonalities between the two tasks,
which sets a good foundation for joint learning.

The MTL with NTN fusion model outperforms both the
standalone and shared LSTM models with a significant margin
of improvement in the F1-Score for negation scope detection.
This means that the additional NTN fusion network serves as a
beneficial component for inheriting the inter-task resemblance
into the model. All our multitask learning variants outperform
the standard single-task learning model in our primal task of
negation scope detection, exhibiting the potential of MTL in
natural language processing tasks.

Comparing MTL with NTN Fusion and MTL with pre-
trained POS layers, we can see that although the addition of
POS information is beneficial for negation scope detection,
there’s a trade-off between the accuracies of the two tasks.

Even though the performance of our model is not quite
on par with the state-of-the-art model [19], which utilizes
embedded universal POS information, the proposed multitask
learning framework has a lot of potentials. As we can infer
from the results, POS tagging is related but not strongly tied to
negation scope detection. More relevant syntactic processing
tasks can be incorporated into the joint learning model to
improve the performance, such as lemmatization and parsing.

VI. CONCLUSION

In this work, we leverage the idea of deep multitask learning
to assess the potential of standard syntactic features in learning
to solve natural language pre-processing tasks. We use shared
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TABLE I
RESULTS OF DIFFERENT APPROACHES OF NEGATION SCOPE DETECTION ON THE CONAN-DOYLE DATASET

Approach Negation Scope Detection
Presicion Recall F1-Score

Some Previous Models
Rule-based (de Albornoz et al., 2012) 85.37 68.53 76.03
CRF-based (Lapponi et al., 2012) 82.25 82.16 82.20
SVM+heuristics (Read et al., 2012) 81.99 88.81 85.26
Bi-LSTM based (Fancellu et al., 2016) 92.62 85.13 88.72
MTL with NTN Fusion (Our model) 82.73 80.55 81.63

TABLE II
RESULTS FOR OUR DIFFERENT MODEL VARIANTS ON THE CONAN-DOYLE DATASET

Model Variant POS Tagging Negation Scope Detection
Accuracy Presicion Recall F1-Score

Stardard Single-Task Learning 85.87% 79.44% 73.87% 76.56%
Simple MTL with Shared LSTM 82.54% 87.23% 69.57% 77.41%
MTL with NTN Fusion 87.09% 82.73% 80.55% 81.63%
MTL with separate pre-training of POS layer 93.33% 82.50% 78.25% 80.63%

neural network layers to exploit the linguistic relations be-
tween negation scope detection and POS tagging using various
multitask learning architectures. Furthermore, we show that
multitask learning-based methods for negation scope detection,
using POS tagging as an auxiliary task, though not on par
with the state-of-the-art, reasonably outperform the standard
single-task learning model. We also concluded that while POS
tagging is beneficial for negation scope detection, a trade-off
can happen when trying to push the performance of both tasks.

For future work, it’s worth further experimenting on the
proposed MTL framework with other tasks related to negation
scope detection, such as morphological tagging, lemmatiza-
tion, and parsing.
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