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Abstract—Shale oil and gas have become very promising
unconventional energies in recent years. To optimize operations
in oil and gas production, a reservoir model is important for
understanding the subsurface appropriately. Generally, sensor
data, such as surface seismic data, are most popular data sources
in modeling the reservoir with either a numerical simulation
model or an Artificial Intelligence (AI)-based model. In this
paper, to obtain data that describe the subsurface more exactly,
information, including phrases that indicates possible bearing
oil or gas and rock colors, is extracted from geology reports.
Sentiments of the phrases is identified by sentiment analysis, and
sentiment sequence over measured depths is then used to generate
features. The rock-color similarities between wells are calculated
as well, and integrated as distance metrics into a geology-based
regression method. Extensive experiments on Bakken wells in
the United States show the effectiveness of using the features
extracted from geology reports and the rock colors in terms of
estimating well production.

Keywords—geology report; sentiment-based feature; production
estimation

I. INTRODUCTION

Since the shale revolution in the United States, shale gas
has been rapidly emerging as a significant unconventional
resource, which attracts a tremendous investment. In the shale
oil and gas industry, operators and service providers offer
solutions for exploration, drilling, and completion before well
production. However, according to a survey [1], about 40%
of shale wells underperform production expected by compa-
nies. The main reasons for this underachievement are due
to inaccurate exploration and inappropriate understanding on
the subsurface. It is so-called reservoir modeling, an essential
process to be performed in well development, that helps to
make the optimal operations for well development.

Traditional reservoir modeling simulates production from
a field of multiple wells as a function of the characteristics of
the reservoir in question. Its functional relationships follow
specific physical laws, which are non-flexible. As a result,
it might not be suitable for modeling different well fields
or areas. Recently, Artificial Intelligence (AI)-based reservoir
modeling with big data analytics [2][3] has been received a
lot of attentions owing to its various advantages. The most
significant advantage is that an AI-based model is flexible in
regard to changes and diversity of data. Accordingly, in this
work, we focus on the AI-based model.

When modeling the reservoir, Formation Evaluation (FE)
[4] is used to interpret a combination of measurements, such

as gamma radiation and resistivity, taken inside a wellbore to
detect and quantify oil and gas reserves. However, these down-
hole measurements might fail to achieve reasonable accuracies
due to temperature, pressure, and/or vibration in the wellbore.
A geology report, which is issued by a geologist who analyzes
physical properties of sample rocks along wellbore, provides a
more accurate access to the subsurface. It is one of documents
used in formation evaluation to complement surface seismic
data and well-logging data.

In the present work, the geology report is studied to
determine how it can contribute to the FE process. We mainly
focus on extracting information from the geology report, in
which the geologist gives an opinion on a number of specific
properties of a sample rock. The opinion is identified as a
sentiment by using sentiment analysis. sentiment sequence
over depths is used to generate sentiment-based features. This
work is related to aspect-based sentiment summarization [5].
Most of research studies focus on reviews or texts from the
web, which are posted or commented on by individuals. These
reviews can therefore be considered as being independent.
However, the sentiment sequence over depths is essentially
different from sentiments in the reviews, because neighboring
sentiments might be related to each other. It can be explained
by the fact that geology change is often not dramatic in a
local area of the subsurface. To the best of our knowledge,
the present work is the first to apply techniques of sentiment
analysis to extract information from geology reports.

As an application, the features extracted from geology
reports are utilized to estimate well production. Besides these
features, the similarity of rock colors taken from different
wellbores is calculated. The rock-color similarity is integrated
as a distance measure into a popular location-based regression
method to boost estimation performance. In other words,
the geology information and well production can be more
effectively correlated. These correlations help on-site engineers
and geologists to improve the operations involved in well
completion. It should be pointed out that a large amount of
research studies estimate well production [6] after the well
completion. These works mainly use techniques for analyzing
time-series data, such as Neural Network and Fuzzy Logics
[7] [8], to predict future production based on past production.
In contrast, the present work estimates production before well
completion, which is right after well drilling. This production
estimation is important in formation evaluation, since the esti-
mation results can be used to evaluate hydrocarbons reservoirs.
It helps to optimize production operations, such as placing
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Fig. 1. A sample geology report.

fracturing stages in zone bearing oil or gas most.

The main contributions of this work are as follows. 1,
information is extracted from geology report and analyzed by
sentiment analysis. 2, the sentiments of a number of specific
aspects in a depth series are summarized as features that
reflect geological changes in the subsurface. 3, the relationship
between rock-color similarity and well production is exper-
imentally determined. A popular geology-based regression
method is extended by integrating the rock-color similarity into
the geological distance space.

II. PRELIMINARY ON SHALE WELL AND GEOLOGY
REPORT

As an unconventional energy sources, shale oil and gas
production are quite different from conventional ones, such
as crude oil. The main difference is the use of techniques
of horizontal drilling and hydraulic fracturing. Accordingly,
a wellbore consists of two sections, namely a vertical section
and a horizontal section which is drilled through the shale
formation.

The geology report referred to in this paper is a log of rock
samples taken from a wellbore. It records information about
sample rocks at each depth along the wellbore. At drilling
stage, the rock samples taken along wellbore are analyzed by
a geologist. After the drilling is finished, a formation evaluation
is conducted to evaluate the reservoir, and the evaluation results
facilitate optimizing the operations of oil and gas production,
such as setting optimal locations for fracturing. A sample
geology report1, which lists measured depth of a rock sample
and a description of the rock sample in pairs, is shown in
Figure 1. As shown in the figure, the left side is the depth
range in feet, and the right side is the rock description in each
depth range. The rock description is composed of a list of
phrases that depict properties of the sample rocks, such as rock
color, rock texture and physical or chemical properties. Some
phrases express the opinions of the geologist with respect to
the properties, and those opinions indicate whether nor not the
depth range covers an oil or gas bearing zone. The aim of this
work is to extract these opinions from the geology report, and
utilize opinion information concerning rock samples along the
wellbore to estimate oil and gas production.

III. FRAMEWORK OF PRODUCTION ESTIMATION
We propose a framework for estimating well production,

which includes three main components, namely information
extraction, feature extraction and production estimation. First,
phrases of interest are extracted from a preprocessed geology
1https://www.dmr.nd.gov/oilgas/

report; Second, features are extracted on the basis of opin-
ion series associated with the extracted phrases; Third, well
production is estimated by integrating features extracted from
the geology reports with other available data sources, such as
formation tops data.

The fundamental ideas about estimating well production
using information from geology reports are two-fold. First,
from the viewpoint of geological feature, a geology report
includes a list of phrases at each depth range along a wellbore.
Some phrases show opinions of the geologist with respect to
a number of specific properties, and these opinions indicate
the possible oil or gas bearing sections in the wellbore. These
opinions are summarized into features that help to estimate
well production. Second, from the viewpoint of a production-
estimation model, geology-based regression models often as-
sume that near wells are more influential on a target well than
distant wells. Besides geological distance, such as trajectory
distance between two wellbores, similarity of rock colors
along wellbore can be regarded as another distance metric for
measuring the relationship between two wells. It is assumed
that rock colors indicate the geological characteristics of the
rocks to a certain degree.

IV. INFORMATION EXTRACTION
Information Extraction includes two functionalities, which

are phrase extraction and rock color extraction.

A. Phrase Extraction

We extract three categories of featured phrases. i.e., oil
stain, porosity, and fluorescence cut. The main reason for
extracting them is that they are key rock properties that a
geologist examines to evaluate the quality of a reservoir. The
types of phrases are explained as follows. First, oil stain is
a kind of “oil show”, and is left on rock samples. It is an
indicator for a high possibility of bearing oil. For instance,
“very strong oil odor” and “rare oil staining” are positive and
negative examples of oil stain, respectively. Second, porosity
is the volume of the non-solid portion of the rock filled with
fluids, divided by the total volume of the rock. If the porosity
is high, oil and gas are more likely to permeate from the
interior of the rock. For instance, “fine to good porosity” and
“very poor porosity” are positive and negative examples of
porosity, respectively. Third, fluorescence cut describes the
following outcome: if hydrocarbons are present in the rock,
they will disseminate into the solvent, giving the entire solvent
a distinctive color under ultraviolet light. This sheen under UV
light is called cut and the color of the cut indicates the quality
of the oil. For instance, “fair streaming cut” and “little to no
cut” are positive and negative examples of fluoresence cut,
respectively.

The above-described phrases can be extracted from a
geology report by a dictionary matching. It is possible because
the rock description for each depth range, which is always
divided by a separator, i.e., a comma, can be parsed into a
list of phrases. In addition, a limited number of terminologies
are used to describe a type of phrase. For example, a phrase
about oil stain often includes keywords such as ‘oil’, ‘stain’,
‘staining’, and ‘odor’.
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B. Rock Color Extraction

The target of rock-color extraction is to generate a rock-
color matrix for each well. The geologist records rock colors
of the rock samples taken from each depth range along the
wellbore. The changes in rock colors along the wellbore reflect
the changes in geological formation to a certain degree. It is
assumed that near wells may have high rock color similarity
due to the fact that near wells may share similar geological
formations.

In the rock color extraction, we first extract colors from
the description of rocks in each depth range, and generate a
binary vector by matching the colors with a color dictionary,
entries of which have fixed color definitions. When the value
of an entry in the vector is equal to 1, it means that the color
shows with rock in the depth, and vice versa. By matching
all depth ranges, we can obtain a binary color matrix for each
geology report. Note that a dictionary for nine rock colors,
including brown, gray, yellow and cyan is defined. Therefore,
the number of columns in the rock-color matrix is nine, and
the number of rows is equivalent to the number of depth ranges
of a wellbore.

V. FEATURE EXTRACTION
The target of feature extraction is to convert the extracted

phrases into sets of numerical values that can discriminate
wells by degree of oil or gas bearing. To make feature
extraction easy, a phrases is categorized into one sentiment
label by sentiment classification. Therefore, for the phrases
over depths, a sentiment label sequence along the wellbore can
be obtained. Then, we extract five feature sets, namely base
feature, ngram feature, p2v feature, hmm feature, and graphsim
feature, from the sentiment label sequence.

A. Sentiment Classification

Due to diverse expressions of the phrases about porosity, oil
stain, and fluorescence cut, in the sentiment analysis, sentiment
labels are designed to represent different degrees of positive. In
the simplest case, two labels, which are positive and negative,
can be designed. If necessary, more granular labels can be
also defined. For example, four labels can be designed, such
as positive, weak positive, weak negative, and negative. It
should be noted that a null label is used in the case that
a depth range has no corresponding phrase. As for feature
extraction, five kinds of features, named by base, ngram, p2v,
hmm, and graphsim are considered. The fundamental idea of
feature extraction is to summarize the sentiments for the three
kinds of phrases over depth range, so that the features can
depict geological characteristic of the subsurface.

B. base feature

In the case of the base feature, the frequencies of sentiment
labels for each aspect are simply calculated. However, in this
case, the frequencies of sentiment labels do not hold orders of
sentiment labels. It might happen that even different sentiment-
label sequences result in the same frequencies of each senti-
ment label. It is therefore natural to consider extracting the
features concerned with label transition over depths, namely
ngram feature, p2v feature, hmm feature, and graphsim feature.

C. ngram feature
In contrast to the typical use of n-gram in the research

field of Natural Language Processing (NLP), in which words
in a sentence are considered, a sentiment label is regarded as
a word in the present study. The assumption of using n-gram
feature is that patterns of n-grams in wells with different well
production might differ. More specifically, the frequencies of
n-grams in high-production wells may significantly differ from
those in low-production wells.

In the case of the ngram feature, sentiment labels of
three kinds of phrases are combined into an integrated label.
For example, let sentiment labels be pos, neg, and pos for
oil stain, porosity, and fluorescence cut, respectively. Then,
the three sentiment labels are combined into one label, e.g.,
pos neg pos. This combined label in a certain depth range is
taken as a word. Therefore, a well can be similarly regarded
as a sentence composed of combined labels, and a set of wells
can be seen as a document composed of those sentences.

Referring to the space of n-grams, it is supposed that
each phrase can be classified as one of the M sentiment
labels. The word space for a combined label in one depth
range is M3. The space of n-gram, namely M3n can be
easily derived. It is thus clear that the space of n-grams
exponentially increases with the value of n. Therefore, it is
necessary to choose the most discriminative n-grams for the
production estimation task. The wells can be partitioned into
three groups, namely high production, normal production, and
low production. Then, a supervised feature selection algorithm,
such as gradient boosting [9], can be used to select the most
informative n-grams. The ngram feature discussed in Section.
VIII-B1 in details.

D. p2v feature
In the case of the p2v feature, a combined sentiment

label for the three aspects is also regarded as a word in
the label sequence. A technique of Deep Learning, named
Paragraph Vector (PV) [10] is utilized to extract the features.
It is an unsupervised algorithm that learns fixed-length feature
representations from variable-length pieces of texts, such as
sentences. This kind of representation is different from the bag-
of-words model, which loses ordering of the word and ignores
semantics of words. The PV model is based on either of two
schemes, namely distributed memory (PV-DM) and distributed
bag of words (PV-DBOW). Since PV-DM considers the word
order within a sliding window over a paragraph, this scheme
is used for the PV model in this study.

As for using the p2v feature, it is assumed that the
distributed representations learned by PV reflect the semantic
meaning of a label sequence, which can further discriminate
the high-production wells and low-production wells. An ex-
ample of semantic meaning can be the degree of positives for
both the sentiment label and the sentiment label sequence. For
example, a positive degree for a combined label can be simply
considered as the number of pos. A detailed analysis of the
p2v feature is discussed in Section. VIII-B2.

E. hmm feature
As for the hmm feature, the basic idea is to summarize the

hidden states of sentiment label sequence by using a Hidden
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Markov Model (HMM), which is widely used in the fields of
Natural Language Processing (NLP) and Speech Processing.
The hidden state is a kind of summarization of the three
different labels in each depth range. From the viewpoint of
a HMM model, sentiment labels over depths are taken as
observations, e.g, pos neg pos and null neg pos. A HMM
is used to infer transitions among the hidden states with
respect to the observation sequence. The hidden states can be
roughly interpreted as a status with either positive attitude or
negative attitude. For example, in the case of pos neg pos and
null neg pos, the hidden state of pos neg pos is expected
to hold a more positive degree than that of null neg pos. It
is because that pos neg pos has two positives in the label,
while null neg pos has only one positive.

After the HMM is trained, we make statistics on the hidden
state sequence as the hmm feature. The statistics include the
frequencies of the states and the state transition frequencies.
The state transition simply means the frequencies from a state
to its self or another state in the state sequence. The analysis
about hmm feature is discussed in Section. VIII-B3.

F. graphsim feature
The assumption in the graphsim feature is that if two wells

have similar well productions, the similarity between transition
graphs is likely to be high. The transition graph is defined as
a directed graph, in which the number of vertices is equal to
the number of specified labels, and the edge from one vertex
to another vertex is associated with the transition frequency
between the two vertices. The label used in the graphsim
feature is also the combined label from the three aspects.
For the three aspects of phrases, each of which has three
possible states, such as pos, neg, and null, the total number
of the combined labels should be 27. However, comparison for
transition graphs of 27 vertices might be sensitive to the noise
in the label sequence.

In order to build up a more robust and semantic tran-
sition graph, a combined label in a certain depth range
is represented in the form of the degree of positives. 7
states are designed, including pos pos pos, pos pos null,
pos pos neg, pos null null, pos null neg, pos neg neg,
and no pos. The 7 states were ranked by the degree of pos-
itives. For example, pos pos pos means that three positives
exist. pos pos null means that two positives and one null
label exist. no pos means that there is not any positive label.
It should be noticed that the new representation does not hold
the order for the three aspects. For example, pos pos null,
pos null pos, and null pos pos are different labels. How-
ever, in the new 7 states, they are the same, because they
both have two positives label and a null label. Note that
the labels without any positive, such as null neg null and
null null null, belong to no pos.

We make statistics on the frequencies among these 7 states.
We found that the states’ frequencies themselves might not
be fully capable of discriminating the wells with different
production. For example, the frequencies of pos pos pos may
be similar among all the wells. However, the ratio of states with
less degree of positives is higher in the low production wells
than high production wells. Therefore, five features for a well
are designed on the basis of the transition graph with the new
7 states. They are listed as follows:

1) The self-transition frequencies for states with two
positives.

2) The ratio of the state transition frequencies among
states with at least two positives to those among states
with less than two positives.

3) The ratio of the state transition frequencies among
states with at least two positives to those among states
without positives.

4) The ratio of the state self-transition frequencies
among states with at least two positives to those
among states with only one positives.

5) The ratio of the state transition frequencies among
states with at least one positive to those among states
without positives.

The graph-transition similarity between two wells can be
represented by the similarity between five features of the
two wells. More specifically, the similarities between the five
features of a well and those of wells with high well production
are used in estimating well production. More detailed analysis
of the graphsim feature is discussed in Section. VIII-B4.

VI. PRODUCTION ESTIMATION
We utilize the extracted features and rock color information

among wells to estimate well production. The most popular
techniques for estimation is regression, which is widely used
in a variety of areas, such as agriculture and economics. Since
the information about geological location is available in the
shale wells, we focus on geology-based regression models,
such as Geographically Weighted Regression (GWR) [11].
Its fundamental idea in the context of shale well is that the
production of near wells have greater influence on a target well
than distant wells. This assumption applies to shale wells, in
which shale wells in a drilling space unit influence production
each other, called well placement problem [12].

In GWR, only geological distance is used to measure if
two wells are near. Under inspiration by the work [13], GWR
is extended to a spatial-color space that considers both the
geological distance and the rock-color distance. The assump-
tion of using the rock color distance is that near wells have
similar geological formations, so that their rock color similarity
is high. An detailed analysis of the relationship among rock-
color similarity, trajectory distance, and oil production is made
in Section VIII-A to support this assumption.

The extension of GWR, named GCWR, can be expressed
as:

Yi = β0(li, ci) +
∑

k

βk(li, ci)Xik (1)

where Xik represents the value of the k-th variable in sample
Xi, and Yi is the response value for sample Xi. βk(li, ci) is
a set of weights at point i. li and ci represent the geological
location and color information of the i-th point, respectively.
β0(li, ci) is the weight for the intercept. The estimation of
βk(li, ci) can be calculated as:

β̂li,ci = [XW (li, ci)X]−1XT W (li, ci)Y (2)

whereW (li, ci) = diag(αi1, αi2, . . . , αin) and n is the number
of observations. diag() is a diagonal matrix in which the entries
outside the main diagonal are all zero. The diagonal elements
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αij are the weights at a spatial and rock-color space, and are
formulated as follows:

αij = exp{−dt(i, j)2

2h2
t

} × exp{−dc(i, j)2

2h2
c

} (3)

where dt(i, j) represents the geological distance. In our prob-
lem, trajectory distance between two wells is used as the geo-
logical distance. This is because different wells have different
shape of wellbore, and considering the distance between two
wellheads might lose information about the wellbore, such as
wellbore shape, and drilling direction. dc(i, j) is a term related
to distance on rock color. Similar to the parameter ht for
geological distance is important for GWR, it should be noted
that the parameter setting for rock color distance hc influences
to the performance. The way to set the value of hc is discussed
in Section VIII-A3
1) Trajectory Distance: To simplify the calculation of tra-

jectory distance, we suppose the vertical section of a wellbore
is truly vertical, divide the horizontal sections of two wellbores
into L sections evenly, and average the distances between the
L + 1 points in the horizontal sections. It is also supposed
that the vertical section of a wellbore is truly vertical and
the horizontal sections of wells keep a constant difference in
vertical depths. The trajectory distance between two wells can
be calculated as:

disttraj(P,Q) =
1

L + 1

L+1∑
k=1

pd(gd(Li
P , Li

Q), DPQ) (4)

where N represents the number of evenly divided sections
in the horizontal sections of wells. Li

P and Li
Q are the pairs

of longitude and latitude in the i-th point in the horizontal
sections for wells P and Q, respectively. gd(x, y) represents
a geological distance, such as Haversine distance, between the
two locations, i.e., x and y. DPQ is the difference between
vertical depth of the two wells. pd(x, y) represents a distance
according to the popular Pythagorean theorem, stating the
square root of the summation of the squares for x and y,
respectively. Since the wellbore for shale well is not only
vertical, the direction of the horizontal sections of two wells
significantly affects the distance between the two wells.
2) Rock Color Similarity: The distance about rock colors

dc(i, j) in Eq. (3) by simply obtained by setting 1−simc(i, j),
where simc(i, j) is defined as the rock color similarity.
Due to different number of rows of rock-color matrices,

rock-color similarity between two wells can be calculated by
sliding a color matrix along with the other. At each comparison
during the sliding, we calculate the ratio of the number of
1 matchings to the size of the smaller color matrix, and
average the ratios in all comparisons to give the color similarity
between the two wells. The rock-color similarity between two
wells is calculated as follows:

simc(P,Q) =
1
K

K∑
k=0

1
s(Q)

∑
i,j

1(P k·r(Q)
ij , Qij) (5)

where P and Q represent the color matrices, and the number
of rows of P , r(P ) is larger than that of Q, r(Q). K is the
quotient of r(P ) divided by r(Q). s(Q) denotes the number
of entries in Q. 1(x, y) is a function whose value is equal to 1
only in the case of x = y = 1. Note that we can also choose
another way of comparing two rock-color matrices.

TABLE I. SENTIMENT CLASSIFICATION IN THE CASES OF 2 CLASSES
AND 4 CLASSES.

2 classes 4 classes
Aspect SVM LR SVM LR
stain .9626 .9626 .8724 .8638
porosity .9451 .9484 .8667 .8611
cut .8586 .8542 .8399 .8171

VII. EXPERIMENTAL RESULTS
In this section, we present the experimental results of

well production estimation using the information extracted
from geology report. First, we explain which data is used
and how data is preprocessed. Then, we show the results of
the sentiment classification. Last, we discuss the results of
well production estimation using the features extracted from
geology report.

A. Experimental Data

We study the data of shale oil & gas wells permitted
in North Dakota in the United States, which is public at
a government site (see footnote 1). This website includes
a huge amount of information about wells, including well
summarization, well trajectory, well logging data and scanned
reports.

In this experiment, we focus on three categories of in-
formation, which are well summarization information, well
trajectory, and geology report in scanned reports. Well sum-
marizations record the basic information about each well,
including wellhead location, well type, total measured depth,
and formation tops, etc. Note that formation tops data record
depths of a number of specific formations.

We mainly use formations top data as the structured data.
For scanned geology reports, we use a commercial OCR
software, named Abbyy Fine Reader, together with layout
analysis to extract the list of depth and rock description for
each well. Since some wells have missing trajectory data,
scanned geology report, and formation tops, we prepare 1764
wells for well production estimation.

B. Results of Sentiment Classification

To classify sentiments, manually labeled data is required.
For each category of phrases, e.g., oil stain, porosity, or
fluorescence cut, we manually label the phrases that appear
more than 20 times. At the beginning, each kind of phrase is
labeled by using four sentiment labels to represent degrees of
sentiments, namely positive (PT), weak positive (WP), weak
negative (WN), and negative (NG).

To learn the classification model, we try most popular
classification methods, such as Support Vector Machine (SVM)
and Logistic Regression (LR). Classification performances are
evaluated by using 5×10 cross-validation and setting the best
parameters for each classification method. F-score is used as
criterion of classification performance. On the other hand, two
sentiment labels, i.e., positive and negative, are also used. In
other words, both PT and WP are regarded as PT, and both WP
and NG are regarded as NG. Table I shows the classification
performances in the case of two classes and four classes. It
can be seen that the classification performance of each aspect
in the 2-class case is reasonably good. However, four classes
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can represent richer degrees of sentiment than two classes.
In the trade-off between sentiment classification accuracy and
number of degrees in sentiment, the former is given a higher
priority, since inferior classification accuracy will have a side-
effect on the following feature extraction. Therefore, in the
experiment, only two sentiment labels, together with a null
label, are used.

C. Production Estimation Results
Oil and gas production is estimated by using formation-tops

data together with features and rock-color information from
geology reports. The rock-color information is only used for
the GCWR method, while the features from geology reports
are applicable to all regression methods. For estimating oil
production, we use averaged bbls in the first 12 months,
which is calculated by dividing the total bbls in the first 12
months with number of effective working days. Similarly, for
estimating gas production, we use averaged mcfs in the first 12
months. Note that bbl and mcf are units for oil and natural gas
volumes, respectively. In the estimation of oil and gas produc-
tion, four criteria, i.e., Mean Absolute Error (MAE), Squared
Mean Squared Error (RMSE), and Correlation Coefficient R,
are used. According to the definitions of the criteria, lower
values of MAE and RMSE represent better estimation results,
while larger values of R represent better estimation results.

To clarify the effectiveness of the features extracted from
geology reports, different number of combinations for the fea-
tures are used together with the structured data, i.e., formation-
tops data. Note that the value i in i-F (i = 1, 2, 3, 4, 5) denotes
the number of combined features. For example, 1-F means that
one feature is selected from the five to concatenate with the
structured data. In addition, the dimension of each feature is
optimized by maximizing the regression performance in the 1-
F case. For comparison with our proposed method GCWR,
we examine estimation performances of popular regression
methods, such as Kernel Ridge Regression (KRR), Support
Vector Regression (SVR), Ordinary Least Square (OLS), and
GWR, in terms of 5 × 10 cross validation. For each method,
parameters are tuned. In addition, we use 3-gram. The value
L is set to be 30 for each well in the trajectory distance, since
most of wells have 25 or 30 stages in average.

Table II lists the results of the oil and gas production
estimation of each method with different number of combined
features. The column labeled ‘structure’ represents perfor-
mances estimated with structured data only, i.e., formation-
tops data. The columns labeled i-F represent performances
estimated by using both structured data and features from
geology reports. Note that the values in this table are averages
in the cross validation, each of which is the best result for
each method after tuning parameters. For each feature setting,
i.e., structure and i-F, we examine if the best performance is
significantly better than the others. Note that in Table II, the
values with bold fonts denote the best performances, and the
values marked with a star show that they are not significantly
inferior to the best performances at significance level of 0.1.

Four key points can be drawn from Table II. First, the
performances of KRR decrease when features from geology
reports are used. Second, the performances of OLS, SVR,
GWR, and GCWR increase when features from geology re-
ports are used. However, they do not always increase with

TABLE III. R VALUES OF REGRESSION METHODS WHEN USING ONE
FEATURE WITH STRUCTURED DATA.

Type Method structure base hmm ngram graphsim p2v
OLS .3296 .3402 .3429 .3965 .3498 .3567
SVR .3244 .3268 .3255 .4012 .3426 .3469

Oil GWR .5117 .5148 .5105 .5205 .5174 .5189
GCWR .5285 .5286 .5311 .5335 .5346 .5406
OLS .3104 .3345 .3387 .4103 .3329 .3230
SVR .3287 .3430 .3391 .4286 .3492 .3414

Gas GWR .4837 .4765 .4862 .4867 .4908 .4982
GCWR .4905 .4865 .5004 .4914 .4958 .5065

TABLE IV. COUNT OF FEATURES IN BEST-FEATURE COMBINATIONS
OF i-F (i = 1, 2, 3, 4) FOR EACH METHOD.

Type Method base hmm ngram graphsim p2v
OLS 2 3 4 1 0
SVR 0 2 4 3 1

Oil GWR 2 0 4 1 3
GCWR 1 1 1 1 3
OLS 2 3 4 1 0
SVR 0 3 4 2 1

Gas GWR 2 2 0 2 4
GCWR 2 2 1 1 4
ALL # 11 16 22 12 14

increasing number of combined features. For example, OLS,
SVR, GWR, and GCWR tend to get their best performances at
3-F or 4-F, and their performances degenerate if the number of
features increases. Third, GWR and GCWR, which are kinds
of geology-based regression methods, outperform OLS and
SVR. It can be seen that the neighboring relationship measured
by geological locations has an positive effect on estimating
well production. Fourth, the performances of GCWR are
always better than that of GWR in both oil and gas production
estimation. This result indicates that the rock color information
is effective and helpful in regard to improving the performance
of well production estimation.

The effects of each feature on the performance of each
method, except KRR, are investigated, since KRR does not
attain better performance when the features from geology
reports are integrated. First, to understand the effectiveness
of combing each feature with the structured data, R values of
each method in the 1-F setting are investigated. The results are
listed in Table III. It is clear that in most cases, features from
the geology reports improve the performance of estimation.
Second, to understand the overall effectiveness of each feature,
which feature contributes to which method most and the
contribution of each feature to all methods are investigated.
We examine the optimal combinations of features in 1-F, 2-
F, 3-F, and 4-F settings for each method with respect to the
metric R, and count the number of appearances of each feature
in each method. According to Table IV, it is interesting to note
that the ngram feature seems to be more effective in regard to
OLS and SVR, and the p2v feature seems to be more effective
in regard to GWR and GCWR.

VIII. EXPERIMENT DISCUSSIONS

A deep empirical analysis of the rock colors and the fea-
tures from geology report is performed, indicating the reason
that they effectively improve the performance of production
estimation. For simplicity, only oil production data is used as
a target variable in this analysis.
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TABLE II. OIL AND GAS PRODUCTION ESTIMATION USING FEATURES EXTRACTED FROM GEOLOGY REPORTS.

Oil Production Gas Production
Method Metric Structure 1-F 2-F 3-F 4-F 5-F Structure 1-F 2-F 3-F 4-F 5-F

MAE 83.44 86.12 86.63 87.47 88.50 90.97 79.42 79.94* 81.18 82.94 84.09 86.66
KRR RMSE 107.13 110.75 112.19 112.88 113.19 115.96 102.78 102.96 104.73 107.26 108.50 109.85

R 0.5282* 0.4758 0.4621 0.4498 0.4365 0.3902 0.5276 0.5244 0.5031* 0.4756 0.4558 0.4168
MAE 95.14 91.71 91.29 91.27 91.38 91.46 90.38 85.80 85.56 85.74 85.94 86.37

OLS RMSE 119.03 116.28 115.75 115.79 115.90 116.10 115.30 111.40 110.69 110.70 110.88 111.21
R 0.3296 0.3965 0.4036 0.4058 0.4045 0.4029 0.3104 0.4103 0.4204 0.4231 0.4208 0.4173
MAE 93.73 89.75 89.59 89.65 89.70 89.70 87.59 82.72 82.68 82.73 82.80 83.10

SVR RMSE 120.61 116.46 116.42 116.53 116.67 116.94 116.43 111.20 111.10 111.20 111.24 111.47
R 0.3244 0.4012 0.4042 0.4019 0.3999 0.3965 0.3287 0.4286 0.4294 0.4299 0.4292 0.4274
MAE 83.62 83.17 82.57 83.03 83.40 84.04 81.70 80.74 80.10 80.69 80.65 81.19*

GWR RMSE 108.59 107.70* 107.07* 107.28* 107.80* 108.59* 107.38 106.59 105.93* 106.30* 106.54* 106.96*
R 0.5117 0.5205 0.5289 0.5281* 0.5238 0.5156 0.4837 0.4982 0.4996* 0.5093* 0.5145* 0.5049*
MAE 82.56 81.65 81.33 81.81 82.13 83.00 80.13* 79.30 78.97 79.22 79.46 80.23

GCWR RMSE 107.26* 106.41 106.09 106.71 107.04 108.18 107.23 106.02 105.55* 105.40 106.09 106.89
R 0.5285 0.5406 0.5438 0.5378 0.5368 0.5265 0.4905 0.5065* 0.5092 0.5235 0.5230 0.5075
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Fig. 2. Relationship between rock-color similarity and trajectory distance.

A. Analysis of Rock Colors

Rock color was experimentally analyzed. Two relationships
are examined, namely that between rock-color similarity and
trajectory distance, and that between rock-color similarity and
oil production. These two relationships implicitly clarify the
reason of integrating the rock-color similarities between wells
into the GWR model.

1) Relationship between rock-color similarity and trajec-
tory distance: The relationship between rock-color similarity
and trajectory distance is investigated as follows. For each pair
of wells, we calculate the trajectory distance from Eq. (4) and
the rock color similarity from Eq. (5). Their relationship is
shown in Figure 2, in which the x-axis is the trajectory distance
between two wells, and the y-axis is the color similarity
between two wells. We divide the trajectory distance range
(0, 400] into equal bins with size of 1 km. Each point in Figure
2 is the averaged value of rock-color similarities among the
wells if the trajectory distance between two wells fall into the
bins. It can be seen from Figure 2 that when the trajectory
distance between two wells increases, their corresponding
rock-color similarity decreases. It is noted that the rock-color
similarity almost ends around 0.5, meaning that the rock colors
of the two wells have little correlation. This is because, as
shown in Eq. (5), if the value in two color matrices are
randomly either 0 or 1, the similarity between the two matrices
should be statistically around 0.5.

2) Relationship between rock-color similarity and oil pro-
duction: The assumption behind this relationship is that if the
rock color similarity between two wells is high, oil productions
of the two wells are similar. To clarify this relationship, the
following calculation is performed: first, given a well and
a distance threshold thd, find neighbors of the well if the
trajectory distance between a neighboring well and the given
well is shorter than thd; second, calculate the rock color
similarity between the given well and the neighboring well;
third, calculate the production change ratio from

rprod(t, n) =
|prodt − prodn|

prodt
(6)

where prodt is oil production of the given well, and prodn is
oil production of its neighbor well. It should be noted that
if prodt is equal to prodn, the oil-production-change ratio
rprod(t, n) will be 0; fourth, divide [0, 1] of the rock-color
similarity space into equal bins with size of 0.001, and average
the production change ratios if the color similarity between two
wells fall into the range of a bin. Set thd to be 20 km. The
relationship between rock-color similarity and oil-production-
change ratio for different distance thresholds is shown in
Figure 3. It is clear that when rock-color similarity between
two wells is higher than around 0.4, the oil-production-change
ratio decreases. This result implicitly validates our assumption
that two wells that have the similar rock color may have
similar oil production. This validation is reasonable, because
rock colors reflect geological formations of the subsurface,
and similar geological formations may result in similar oil
production.

3) Analysis of parameter behavior about rock colors in
GCWR: As shown in Eq. (3), the weight between two wells
is determined by two terms, which are related to trajectory
distance and rock-color similarity. Through the above analysis
of the rock colors, it is known that if two wells have high rock-
color similarity, their oil productions are similar. This means
that if the rock-color similarity between two wells approaches
1, the second term on the right side of Eq. (3) is close to 1; if
the rock-color similarity between two wells approaches 0, the
second term on the right side of Eq. (3) is close to 0. Based
on this observation, the behavior of hc in the GCWR model
from another viewpoint is explained. It is supposed that, if the
rock-color similarity simc is larger than a threshold thc, the
second term on the right side of Eq. (3) gives a weight in the
range of (γ, 1] where γ ∈ (0, 1); otherwise, the term directly
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Fig. 3. Relationship between rock-color similarity and oil production.
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gives a zero weight.

R changes with respect to both thc and γ are shown in
Figure 4. It can be seen that when thc is lower than around
0.4, R tends to get the best performances when γ is lower
than 0.1. When thc increases from 0.4, R tends to achieve the
best performances while γ is increasing. The reason might be
that setting a low value of γ and a high value of thc tends to
weaken the effect of the high rock-color similarity.

How rock-color similarity and trajectory distance affect αij

in Eq. (3) is explained in the following typical three cases.
First, two near wells, wp and wq, have the same trajectory
distance with a target well wt, and the color similarity between
wp and wt, simc(p, t), is larger than that between wq and
wt, simc(q, t), where simc(p, t) > simc(q, t) > thc. In this
case, it follows αat > αbt. Second, if thc > simc(p, t) >
simc(q, t), αpt � αqt � 0 holds even if the first term on the
right side of Eq. (3) is larger than 0. Third, if well wm is
very distant from the target well, wt, and simc(m, t) > thc,
αmt � 0 may hold because the first term on the right side of
Eq. (3) approaches 0 due to the large distance.

B. Analysis of Features

In this subsection, we make analysis of the ngram feature,
p2v feature, hmm feature, and graphsim feature

TABLE V. KL DIVERGENCE ON FREQUENCIES DISTRIBUTIONS
AMONG CATEGORIES.

all 3-grams selected 3-grams positive degrees
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

1st 0. .384 .596 0. .137 .282 0. .032 .099
2nd .453 0. .229 .111 0. .046 .029 0. .019
3rd .480 0.136 0. .224 .043 0. .083 .017 0.

TABLE VI. CLASSIFICATION PERFORMANCES WITH DIFFERENT
DIMENSIONS OF THE SELECTED 3-GRAMS AND 5-GRAMS.

3-grams 5-grams
Dim SVM LR SVM LR
10 .6115 .6219 .4490 .4791
30 .6794 .6809 .6905 .6920
50 .7097 .7043 .6976 .7087
70 .7016 .6936 .6586 .6535
100 .6715 .6670 .6520 .6421

1) Analysis of ngram feature: In this analysis, we investi-
gate if the ngram feature is able to discriminate wells with
different oil production. 3-grams is used as an example to
explain. Wells are partitioned into three groups, namely wells
with high oil production, normal oil production, and low oil
production. Oil production is normalized into range [0, 1], and
frequencies of wells for each bin with size of 0.1 are counted.
It is found that more than one-third of wells have oil production
in range [0.1, 0.2]. Therefore, it is reasonable to make the
following three partitions. If oil productions of three wells
fall into ranges [0, 0.1), [0.1, 0.4), and [0.4, 1], those wells are
regarded as a low-production well, a normal-production well,
and a high-production, respectively.

Three forms related to 3-grams are considered, namely
full 3-grams, selected 3 grams, and positive degree. Full 3-
grams are all possible 3-grams. For each form, we calculate
the frequencies. Selected 3-grams are the 3-grams that are most
discriminative for the three groups of wells. Gradient boosting
[9] is used to select 64 3-grams. Positive degree for a 3-gram is
defined as an ordered tuple, and each of element is the number
of pos in a label. For example, in the case of 3-gram, such
as (pos pos neg, neg pos neg, null neg pos), its positive
degree is an ordered tuple (2, 1, 1). The positive degree for a
3-gram provides a way to explain the meaning of a 3-gram.
Note that for a 3-gram, it can be easily shown that 64 possible
positive degrees exist, because each entry in the tuple has 4
possible values, namely 3, 2, 1, and 0.

To compare differences between frequency distributions of
three groups for each form, KL divergence is used as the
criterion. As listed in Table V, it can be seen that the difference
between the frequency distribution of the three groups are
obvious in all three forms. The selected 3-grams have smaller
difference in frequency distribution of the 1st and the 3rd
groups than that in full 3-grams. However, they are able to
reduce the number of feature dimensions to a large extent.
It is interesting to note that the positive degrees for the full
3-grams can even discriminate the three groups as well.

The optimal n for the ngram feature is experimentally
investigated. The wells are partitioned into two groups with
equal size, and two popular classification methods, i.e., SVM
and LR, are used to determined the classification performances
in terms of F-score. Table VI shows the performances of the
selected n-grams (n = {3, 5}) at different dimensions that
changes from 10 to 100. It can be seen that the performances
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TABLE VII. CLASSIFICATION PERFORMANCES OF p2v FEATURE. (D,
W) IS THE PAIR COMPOSED OF A DIMENSION AND A WINDOW SIZE.

2 classes 2 class variant
(D, W) SVM LR SVM LR
(10, 25) .6705 .4751 .6723 .4874
(15, 5) .6707 .5587 .7611 .5593
(20, 5) .6826 .5795 .7568 .5641
(20, 10) .7879 .6180 .8393 .6261

of 3-grams are better than those of 5-grams in most cases.

2) Analysis of p2v feature: It is found that the PV model
is even able to learn sentiment of labels. We regard the
positive degrees in the gramsim feature as a kind of sentiment.
We calculate the similarity between pos pos pos and other
positive degrees. For example, the similarity between two
positive degrees, such as pos pos pos and pos pos null,
is the averaged similarities between the label pos pos pos
and the labels with 2 positives and one null label, such
as pos pos null, pos null pos, null pos pos. In the PV
model, the window size and the number of dimension are two
important parameters. The two parameters are tuned, and the
positive degrees are ranked by descending the similarities with
respect to pos pos pos. The order is determined as follows:
pos pos null, pos pos neg, pos null neg, pos null null,
pos neg neg, and nopos, when the window size is set to be
10 and the number of dimension is set to be 20. It can be
inferred that the sentiment information is implicitly embedded
in the representation vector learned by the PV model.

Classification performance using the p2v feature is also
evaluated. Two cases are considered, namely 2-class and 2-
class variant. In the case of 2-class, the wells are partitioned
into two groups with equal size based on oil production. In
the case of 2-class variant, the wells are partitioned into three
groups with equal size, which are low production, normal
production, and high production. Only two groups are kept,
i.e., low production and high production. The dimensions of
the learned feature are tuned in the range [10, 15, 20], and
window size is tuned in the range [5, 10, 15, 20, 25]. The
classification results of the two cases with different pairs of
dimension and window size are listed in Table VII when the
ranking for the positive degrees with respect to pos pos pos
is good enough. It can be seen from Table VII that the
performances in the case of 2 class variant are better than
those in the case of 2 class. It indicates that the p2v feature
can discriminate wells with different oil productions.

3) Analysis of hmm feature: In this analysis, we examine
if the states learned by the HMM are capable of reflecting
positive degree of each label. Two types of positive degree
are used. The first type is the 7 positive degrees used in
the graphsim features, namely pos pos pos, pos pos null,
pos pos neg, pos null null, pos null neg, pos neg neg,
and no pos. The second type is at a more abstract level. It
simply count the number of pos for each label, which are
three positives, two positives, one positive, no positive.

In HMM, the number of states is set to be 2, which is
often the optimal states for regression methods in Section VII.
We first get the positive degree for each observation, which
is a integrated label. The frequencies of positive degrees for
each state is then calculated according to the state sequence.
As shown in Figure 5, it can be seen that the frequencies of

positive degrees implies the meaning of the two states. For
example, the state 0 represents the labels with more positive
degrees, while the state 1 represents the labels with less
positive degrees. Note that the x-axis in Figure VIII-B3 is
the index of each positive degree. For example, the index 0
means pos pos pos and the index 6 means no pos. It can be
seen that the HMM can learn the state that depicts the degree
of positive for the label derived from the three aspects, namely
oil stain, porosity, and fluorescence cut.
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Fig. 5. Frequency distributions of positive degrees for states.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(a) size=20

0 10 20 30 40 50
0

10

20

30

40

50

(b) size=30

Fig. 6. Similarity graph with 1-norm distance for different window sizes.

4) Analysis of graphsim feature: Similarity between the
five features is used to represent the similarity between label
transition graph. In the similarity matrix, the degree of gray
represents the similarity. For example, the white point shows
the high similarity, while black point shows low similarity. To
draw the similarity matrix, the wells are ordered in descending
oil production. To focus on the trend of similarity change, we
use a simple smoothing technique that averages the features
within different size of windows. Figure 6 shows the similarity
matrix with different window sizes using 1-norm distance as
a metric. Two points can be drawn from Figure 6. First, when
the size of the window increases, the patterns of white areas
become clearer. Second, when the size set to be 30, the two
white areas indicate that the similarities among the averaged
features can differentiate wells with different oil productions.
Therefore, we compare the five features of a well with averaged
five features in top d windows, and use their similarities as the
graphsim feature for the well. Note that d is the number of
dimension for the graphsim feature.
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IX. RELATED WORK

Our research work is mainly related to sentiment analysis
[14] [15] [16]. In recent years, techniques of sentiment analysis
has been widely used in analyzing various kinds of documents,
such as texts in social media [17] and product reviews [18].
Brendan et al. [19] analyzed the sentiment of tweets, and
discovered a correlation between the sentiment of the tweets
and public opinion pools. Kushal et al. [18] studied opinion
extraction and classification for product reviews by identifying
appropriate features and scoring methods. As far as it is known,
sentiment analysis for geology reports has not been studied.

Sentiment or opinion summarization is also related to
our work, since our concern is to summarize a sentiment
sequence into a set of numerical values that show geological
characteristics. The traditional methods used for sentiment
summarization can be mainly divided into two categories,
including multi-document text summarization [21] and aspect-
based summarization [5][22]. The aspect-based summarization
is similar to the base feature used in our study. In the example
of camera reviews, its basic idea is to identify different pro-
duction attributes of cameras, such as picture quality and size,
collect the text in the reviews about these specific attributes,
and classify the reviews into positive or negative labels. The
ratios of positive and negative labels can be easily illustrated
for each aspect.

However, the previous techniques in sentiment analysis can
not be applied to our problem. It is because a geology report
is a depth-series data, and is processed into a list of sentiment
label over depths. Compared with the stock price prediction
using the time-series sentiments, production prediction for
each depth range using the sentiment sequence does not make
sense from the application viewpoint. In addition, sentiment
summarization for geology reports is essentially different that
for product reviews. The sentiment change over depths in
geology reports reflects a geological change in the subsurface.
The sentiments in the local areas in the subsurface is related to
each other, while sentiments from product reviews are almost
independent of individuals. The numerical features extracted
by the sentiment summarization or aggregation are expected
to reflect the geological characteristic of the well, which
facilitates the further analysis of wells, such as well clustering
and estimation of well production.

On the other hand, production estimation is related to
geology-based prediction. Fotheringham et al. [11] proposed
a prediction model based on geological locations, named
Geographically Weighted Regression (GWR). This prediction
model is a weighted version of a typical linear regression
model, in which the weights of samples are influenced by the
geological distances. It has been applied to various areas, such
as crime analysis and estimation of agriculture yield. Huang et
al. [13] proposed a prediction model that considers distances
in both spatial and temporal spaces. This model produces a
promising prediction accuracy of house prices over time. In
our work, the GWR model is extended to a spatial-color space,
which measures both the trajectory distance and the rock-color
distance between wells.

X. CONCLUSION
In this paper, we propose a framework for well production

estimation by using information extracted from geology report.

The sentiments of the phrases in the geology reports are
extracted and then summarized into features. The rock-color
similarity among wellbores is used as a distance metric to be
integrated into a geology-based regression method. Extensive
experiments show the effectiveness of the sentiment-based
features and the rock-color similarity in the well production
estimation.
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